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Abstract—Scientific Workflow Management Systems are being
widely used in recent years for data-intensive analysis tasks or
domain-specific discoveries. It often becomes challenging for an
individual to effectively analyze the large scale scientific data
of relatively higher complexity and dimensions, and requires a
collaboration of multiple members of different disciplines. Hence,
researchers have focused on designing collaborative workflow
management systems. However, consistency management in the
face of conflicting concurrent operations of the collaborators
is a major challenge in such systems. In this paper, we pro-
pose a locking scheme (e.g., collaborator gets write access to
non-conflicting components of the workflow at a given time)
to facilitate consistency management in collaborative scientific
workflow management systems. The proposed method allows
locking workflow components at a granular level in addition to
supporting locks on a targeted part of the collaborative workflow.
We conducted several experiments to analyze the performance of
the proposed method in comparison to related existing methods.
Our studies show that the proposed method can reduce the
average waiting time of a collaborator by up to 36.19% in com-
parison to existing descendent modular level locking techniques
for collaborative scientific workflow management systems.

I. INTRODUCTION

A Scientific Workflow Management System (SWfMS) is a
system that supports the specification, modification, execution,
failure handling, and monitoring of scientific workflows using
workflow logic to control the order of executing workflow
tasks [1]. SWfMSs have gained much popularity in recent
years for accelerating the analysis, visualization, and discov-
eries of important information from a sheer amount of het-
erogeneous data generated on a daily basis by different areas
of modern science [2], [3]. With the increase in complexity,
dimension, and volume of such scientific data, their effective
analysis process is often beyond the scope of an individual
and requires a collaboration of a research group instead [4].
Besides, some scientific domains essentially require collabo-
ration as they are highly correlated among multiple research
disciplines [5].

As a result of extensive research over the last decade, several
data-intensive SWfMSs have been proposed and developed
[1]. A SWfMS provides techniques for modeling re-usable
modular scientific data processing steps and their dependency
relations as Directed Acyclic Graph (DAG) [1]. Some of
the recent popular SWfMSs are: Taverna [6], Galaxy [7],
Kepler [8], Pegasus [9], VisTrails [10], Triana [11], VIEW
[12] and so on. However, these workflow management systems

generally operate in single user mode and do not support any
collaboration among the users [13], [5]. It requires manual
effort for any necessary collaboration among the users. For
example, a common way for scientific workflow collaboration
in recent years is by sharing the workflows on some shared
social spaces, like myExperiment [14]. However, this manual
collaboration process is time-consuming, does not support
real-time editing or any management system for considering
different updates by the collaborators [4], [15], [16], [5], [3].

As a result of this compelling need for collaborative sci-
entific workflow management system, several methods have
been proposed and developed in recent years [4], [16], [15],
[5], [17], [18], [3]. One of the main challenges of such a
collaborative system is consistency management - in the face
of conflicting concurrent operations by the collaborators [19],
[20]. The existing research works use locking techniques -
where only a single collaborator gets exclusive Write access to
a part of the workflow to facilitate the consistency management
[16], [5] by preventing concurrent conflicting operations on the
same workflow component. For example, some related studies
are: the entire workflow object locking in turns [4], descendant
modules locking [3], [5], multiple variants of module locking
[16], [15] and so on (details in Section VI). However, as all
of these existing locking methods work on modular levels,
the collaboration concurrency is dropped significantly as the
workflow complexity grows over time with an increased
number of modules and complicated datalink (in SWfMSs
datalink represents the dataflow dependency relation among
the modular tasks as discussed in Section III) relations among
them [3], [5], [18].

In order to overcome these problems, in this paper we
propose a novel approach by further extending the workflow
module locking to a more fine-grained attribute level. From
our investigation on several recent workflow engines and
their corresponding modules or tools, we found that imposing
strict locks on descendent modules can often be a strong
or redundant restriction in a collaborative scientific work-
flow development environment. A large amount of redundant
descendent workflow module locks imposed by the existing
methods can be significantly avoided or minimized by the
proposed method of attribute level locking.

We conducted several simulated studies of different existing
locking schemes for a comparative analysis with the proposed
method. The experimental studies were conducted considering



different dimensions of collaborative workflow development
environment, such as varying workflow tree structures, varying
topology of the incoming lock requests and so on (Section
IV). All of the studies were repeated a number of times,
and their average values were used to mitigate any possible
biasness in the result. The experimental results show that the
proposed locking scheme can reduce the average waiting time
of a collaborator by up to 36.19% in comparison to existing
descendent module locking schemes, which is promising in the
context of collaborative workflow development system (details
in Section IV).

The rest of the paper is organized as follows: Section II
outlines technical preliminaries and challenges for consistency
management in collaborative workflow development environ-
ment. We then present our proposed method in Section III.
Section IV contains several experimental evaluations of the
proposed method. Section VI presents the related research
works. Finally, Section VII reports our future works and draws
the conclusion.

II. CONSISTENCY MANAGEMENT IN COLLABORATIVE
SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS

Two of the most important requirements for an effective
collaborative systems are [19]:

• High Responsiveness: The effect of any user’s actions
must take place with least amount of delay even with the
non-deterministic communication latency.

• High Concurrency: Multiple users must be able to work
and concurrently edit the same shared object collabora-
tively.

To ensure high responsiveness, most of the collaborative
systems follow a replicated architecture [19]. For example, the
existing research works on collaborative scientific workflow
management systems maintain a local copy of the workflow in
all of the users’ local workflow engine [4], [5], [3]. Collabora-
tion among the users are then maintained by simple message
passing among the workflow engines for the corresponding
local user actions for better responsiveness [19]. However,
maintaining High Concurrency while preserving consistent
workflow state is comparatively more challenging in the face
of conflicting concurrent operations by collaborators [19],
[20].

For example, Figure 1 illustrates the workflow collabo-
ration between two users. The target workflow has been
replicated to both the local workflow engines. At any given
time, we assume the consistent existence of the workflow
object in both the local ends with version 0 (represented
as workflow state 1.0 and 2.0 for the User 1 and 2 re-
spectively for demonstration). In this case two concurrent
conflicting operations - O1 = updateDatalink(mm,mi) and
O2 = updateDatalink(mm,mk), target the same workflow
module - mm. As the design follows a replicated architecture,
the operations immediately update the workflow in the local
ends to give a quick action response, creating the workflow
state 1. The operation information is later passed to the other
collaborating workflow engine for the corresponding update.

Fig. 1. Workflow Version Conflict in Collaborative Development.

Since O1 and O2 target the same workflow module - mm,
but with different attribute values (e.g., mi 6= mk), it is
impossible to preserve the consistency of the workflow object
by simple execution of the operations [19], [20] as depicted
in the figure (e.g., the resulting incoming datalink relation to
module mm are different for the two collaborating users).
Several locking schemes have been proposed [5], [4], [16],
[15], [3] to facilitate preventing such inconsistency problems
in the context of collaborative SWfMSs, where only a single
user is allowed to work on any particular part of the col-
laborative workflow at any given time. However, the existing
methods show poor concurrency in terms of modern scientific
workflows having complex dependency relations and hence, to
mitigate the problems we propose our techniques as discussed
in the following section.

III. FINE-GRAINED WORKFLOW COMPONENT LOCKING
FOR WORKFLOW COLLABORATION

A scientific workflow can be represented as a Directed
Acyclic Graph (DAG), W = (M,E), where M is a set of
workflow modules representing different tasks and E is a
set of directed edges representing the dataflow dependencies
among the modular tasks [3], [21], [22], [23]. A valid
scientific workflow contains n finite number of modules
[21], mi ∈ M, (1 ≤ i ≤ n) depending on the specific data
analysis or manipulation tasks. A workflow module m, is
responsible for performing a specific modular task on a given
dataset. A workflow module thus is generalized as tuple
m =< id,C, S >, where id is the unique identifier of the
module in a workflow that is used for several purposes like
workflow provenance, workflow task scheduling and so on,
C is a set of P different parameter settings or configurations,
ci ∈ C, (1 ≤ i ≤ P) of the module that determines the
execution order (e.g., input dataset in a dataflow oriented
workflow architecture [24]) and behaviour of the modular task
execution (e.g., threshold value for a dataset filtering task and
so on) and finally, S is the modular source code that executes
based on the configuration set, C. The execution order of
those workflow modules are defined in E, which is a set of
directed edges, eij = (mi,mj), (1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j)
representing dataflow link from module mi to module mj [21].



A. Hierarchical Sub-Workflow Locking

Unlike collaborative text or graphics editing systems the
scientific workflows are more structured where one module
can be highly dependent on another forming a hierarchical
relation among them [3]. We formally define the dependency
relation as following:

Definition III.1 (Module Dependency Relation). For a work-
flow W = (M,E), a workflow module mt ∈M is dependent
on the workflow module ms ∈ M , if there exists a sequence
of workflow modules m0 = ms,m1,m2, · · · ,mk = mt, such
that datalink (mi−1,mi) ∈ E, for all, 1 ≤ i ≤ k. Here,
the workflow module mt is a descendant of workflow module
ms, represented as relation D(ms,mt), and cannot begin its
execution until all of its such ancestor modules finish their
executions.

The workflow structure being a DAG [3], [16], the depen-
dency relation is anti-symmetric. That is, if two workflow
modules ms and mt hold dependency relation as D(ms,mt),
then it must not hold the relation D(mt,ms), where ms 6= mt.
Holding both the relation D(ms,mt) and D(mt,ms), would
create a cycle in the Graph (e.g., given, ms 6= mt) causing
deadlock in the execution order of the module ms and mt.

Definition III.2 (Hierarchical Descendant Module Lock).
For a workflow W = (M,E), a hierarchical descendant
module lock, mLOCK(ml) on any module ml ∈ M , grants
Write access to ml and any other module mx ∈ M , where
the relation D(ml,mx) holds. The lock recursively applies
on any datalink (mi−1,mi) ∈ E, in the module sequence
m0 = ml,m1,m2, · · · ,mk = mx, (1 ≤ i ≤ k) for the
dependency relation D(ml,mx).

A hierarchical descendant module lock on any module
ml =< idl, Cl, Sl >, mLOCK(ml), thus allows Write access
to any parameter settings or configuration, ci ∈ Cl, (1 ≤
i ≤ PCl

), where PCl
is the number of parameter settings

or configuration available in workflow module, ml.
Definition III.2 for descendant module locking is applicable

for any simpler linear workflows to any hierarchical scientific
workflows where a workflow is generally composed of several
branched (e.g., dataflow dependency) smaller sub-workflows
recursively. Based on these definitions, a central locking
algorithm can be designed for managing the concurrent sub-
workflow lock/unlock requests by different collaborators.

B. Lock Extension to Granular Module Attribute Level

The hierarchical descendant module locking as presented
above can alone facilitate the consistency management in the
face of concurrent conflicting workflow operations. However,
allowing only hierarchical descendant module locking can
often be too restrictive in terms of modern collaborative
workflow development (as demonstrated in Section IV). From
these considerations, we further extend the lock to a more
granular level as defined in the following:

Fig. 2. Throughput and Average Waiting Time Comparison of Locking
Algorithms for Collaborative Workflow Composition.

Definition III.3 (Granular Attribute Locking). For a work-
flow module, ml =< idl, Cl, Sl >∈ M of a workflow,
W = (M,E), an attribute lock, aLOCK(ml, ci), grants Write
access to attribute, ci ∈ Cl of the workflow module ml.

This granular locking allows additional controls in
conjunction to hierarchical descendant module locking
for explicit sub-workflow locking (e.g., Definition III.2).
Attaining an attribute level lock by a user ensures only single
operation execution on the modular attribute at any given time
to facilitate consistency management. This adds the scope for
higher concurrency as it does not necessarily impose possible
redundant locks to all its descendant modules. Besides, by
Definition III.3, the granular lock can be expanded to include
any workflow module, mx ∈ wU by iteratively imposing
locks to all its attributes, ci ∈ Cx, (1 ≤ i ≤ PCx

).

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

For our experiments, we considered four basic workflow
operations: i) Adding a new module to the workflow, ii)
Adding a new datalink to/from a module, iii) Updating an
attribute of a module and iv) Updating source/destination of a
datalink. Workflow collaborators were simulated using inde-
pendent threads. To simulate short-read, long-thinking pattern
[5], [4], as adopted by related works [5], [3], we considered
random thinking time [5] interval ranging from 10 ms to 15
ms in between any basic workflow operation execution by
a collaborator. If the next thinking time is relatively longer
(e.g., considered, >10 ms), the corresponding collaborator
releases any accessed object, making it available for other
collaborators of the group. To mitigate any possible biasness
from the results, the experiments were repeated multiple times,
and their average values were used for convergence.

B. Evaluation

1) Analysis Study on Throughput and Collaborative
Composition Time: Figure 2 shows the comparison of the
locking schemes in terms of two different dimensions for
varying number of collaborators. All of the three locking
schemes illustrate similar behaviour regarding average
waiting time (i.e., average delay time in between an access
request and its granting) and average update counts (i.e.,



Fig. 3. Algorithm Performances on ‘Best’ and ‘Worst’ Case Scenario of
Collaborative Node Access Requests.

throughput) when the collaborative group size is relatively
smaller (i.e., around two collaborators). However, as the
collaborative group size increases the graphs show significant
differences in performance among the locking schemes. For
example, the average waiting time for the proposed attribute
level locking scheme with 18 collaborators is around 165 ms
in comparison to 2495 ms and 433 ms for turn based [4]
and strict descendant module locking schemes [3], [5], [16]
respectively. A significant improvement is also noticeable in
terms of average update count per minute as the collaborative
group size increases. For example, the workflow update count
per minute for turn based, strict and attribute level locking
schemes are around 4886, 12880 and 20143 respectively for
a collaborative group size of 18.

2) Performance Analysis Study for Varying Topology of
Access Requests: In similar studies, Sipos et al. [16], [15]
showed that the locking algorithm performance can be influ-
enced by the topology of l lock requests, R1, R2, R3, · · ·Rl ∈
RS for the same collaborative workflow W = (M,E). To test
the performance in two extreme cases, two types of request
topologies were considered - a new access request always
targets the available: i) node with lowest dependency degree,
and ii) Oppositely, node with highest dependency degree, φ.
Figure 3 illustrates the obtained results by the algorithms. The
proposed method shows better result for higher number of
collaborators for both the extreme cases. However, the graphs
do not show any general recognizable pattern in their behaviors
as they are often depended on request topology, RS [16].

V. THREATS TO THE VALIDITY

In our simulated experimental studies, we adopted short-
read, long-thinking pattern [5], [4] with a predefined thinking
time range to imitate the human collaborators’ working be-
haviour. However, human working pattern can be more diverse
in nature (e.g., longer thinking time, inter-collaborator commu-
nications and so on) and thus it can be often challenging to
exactly imitate in a simulation study. While this is a common
threat for any simulation studies, the existing state of the
art simulation based related techniques [4], [5], [3] used this
approach for evaluating their studies with success which gave
us confidence on our evaluation as well. Furthermore, in order
to mitigate any biasness in the results, the exact experimental

settings were applied to all of the locking schemes, the
experiments were conducted on the same machine and also
repeated a number of times to use their average values for
convergence. We also conducted the experiments in several
dimensions to validate the performance comparison studies.

VI. RELATED WORKS

SWfMSs have gained much popularity in the past few years
and are widely used for data-intensive analysis, simulation,
visualization and so on [13], [1]. Lu et al. [25] studied
several motivations opportunities for collaborative SWfMSs
from the perspective of large-scale and multidisciplinary re-
search projects. In recent years, several methods have been
proposed for consistency management of the shared workflow
in a collaborative environment. Floor control or turn based
locking schemes (e.g., the entire collaborative object is locked
in turns by collaborators) are widely used for consistency
management in collaborative work environment. Zhang et al.
[4] studied the concept in the context of collaborative workflow
management systems. While such turn based approach better
matches with human communication protocol (e.g., Robert’s
Rules of Order (RRO) [26]), it has several issues such as only a
single collaborator can work on workflow update at any given
time (e.g., the concurrency count is significantly low), longer
average waiting time even for a medium-sized collaborative
group and so on.

Fei et al. [3] and Zhang et al. [5] presented locking schemes
by allowing only descendent module locks (e.g., descendent
nodes of the workflow DAG [1]) instead of imposing the lock
on the entire workflow. Though the collaboration concurrency
is improved in this case in comparison to turn based lock-
ing [4] (as discussed in Section IV), these modular locking
schemes show significant reduction in the concurrency count
as the workflow complexity grows over time with an increased
number of modules and complicated datalink dependency
relation among them. Because, a modular lock in these cases in
turn locks major portions of the collaborative workflow. In an
attempt to lower the redundant sub-workflow locks (e.g., any
intended update on a module, strictly locks all its descendants
modules due to the extension of the locking set [15]), using
multiple modes of sub-workflow locks have also been pro-
posed. Sipos et al. [15] used two lock modes - User and System
locks. Fei et al. [3] proposed a lock compatibility matrix for a
set of six pre-defined modes of locks. While multiple modular
locks can avoid a few of the redundant locks depending on
the defined compatibility relation, the improvement is almost
negligible for a larger collaborative group due to their several
lock conflicts. Techniques have also been studied for extending
the single-user Grid portals to a collaborative environment
[27], [16]. Dou et al. [28] studied context and role-driven
scientific workflow development pattern in a collaborative
environment. However, the extension or generalization of the
method is challenging as defining non-conflicting roles can
often be much complex in terms of consistency and depends
largely on the given collaboration domain.

However, the existing locking schemes operate in the modu-



lar level and thus often result in significantly low concurrency
count in modern scientific workflow collaborations (Section
III). To mitigate the similar problems, collaborative research
works on other domains such as text or graphics editing
systems have considered locking on finest component levels.
For example, Sun et al. [29] studied fine-grain locking scheme
in the character sequence levels for collaborative text editing
systems as previous studies [30] show that finer grained lock-
ing allows higher concurrency in collaborative environments.
To the best of our knowledge, our work is the first in the
context of collaborative SWfMSs to consider finer attribute
level locking in comparison to workflow module level locking.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented our investigation results of
existing locking schemes in terms of consistency management
of modern scientific workflow collaboration in the face of
concurrent conflicting operations. From our study, we found
that considering module level workflow locks can often be
strong assumption resulting significantly low concurrency. We
proposed a fine-grained locking scheme by further extending
the modular locks to attribute level. The proposed attribute
level locking scheme attempts to accelerate the collaborative
workflow development process by lessening redundant sub-
workflow locks. We got promising results from our simulation
studies on multiple collaboration scenarios with a reduction of
average waiting time by up to 36.19% while an increase of
average workflow update rate by up to 15.28% in comparison
to existing descendent modular level locking techniques.

Our future works include conducting user studies for usabil-
ity analysis of the locking schemes in terms of human collab-
orators. None of the existing works targeted similar studies
and thus our findings can be useful for further improvement
of the collaborative workflow development systems.
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