
On the Use of Machine Learning Techniques
Towards the Design of Cloud Based Automatic Code

Clone Validation Tools

Golam Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, Kevin Schneider
Department of Computer Science,

University of Saskatchewan, Saskatoon, Canada
Email: {golam.mostaeen, jeff.svajlenko, banani.roy, chanchal.roy, kevin.schneider}@usask.ca

Abstract—A code clone is a pair of code fragments, within
or between software systems that are similar. Since code clones
often negatively impact the maintainability of a software system,
a great many numbers of code clone detection techniques and
tools have been proposed and studied over the last decade. To
detect all possible similar source code patterns in general, the
clone detection tools work on syntax level (such as texts, tokens,
AST and so on) while lacking user-specific preferences. This often
means the reported clones must be manually validated prior to
any analysis in order to filter out the true positive clones from
task or user-specific considerations. This manual clone validation
effort is very time-consuming and often error-prone, in particular
for large-scale clone detection. In this paper, we propose a
machine learning based approach for automating the validation
process. In an experiment with clones detected by several clone
detectors in several different software systems, we found our
approach has an accuracy of up to 87.4% when compared against
the manual validation by multiple expert judges. The proposed
method shows promising results in several comparative studies
with the existing related approaches for automatic code clone
validation. We also present our experimental results in terms of
different code clone detection tools, machine learning algorithms
and open source software systems.

Keywords—Code clones, validation, Machine Learning, Clone
Management.

I. INTRODUCTION

Copying and reusing certain pieces of existing code di-
rectly or with alteration into another location is a common
programming practice in a software development life cycle [1].
Researchers agree upon four primary clone types [1] : Type-
1 clones are syntactically identical code fragments, regardless
of the presentation style, comments, and white spaces. Type-2
clones are copy and pasted code where identifier names and
types have been changed. Type-3 clones are modified copies
of the original code with statement-level changes (e.g., added,
modified or removed). Syntactically dissimilar code fragments
that implement the same or similar functionality are termed
as Type-4 clones [1]. Some of the recent research shows that
on average around 7% to 23% of total codes of a software
system are duplicated or cloned from one location to another
[2], [3], [4]. Although code cloning is often done intentionally
to accelerate the development process and also not all code
clones are harmful [5], the existence of some of them can
inflate software maintenance costs as clones are one of the
major causes of creation and propagation of software bugs
throughout the system [1], [6].

At least 198 code clone detection tools and techniques have
been proposed and developed to automate the clone detection
process until 2017 [7], as a result of extensive research in
this specific area over the last decade [1], [8], [9], [10], [11],
[12], [13]. These tools return a list of possible code clone
pairs available in a given software system. Except for Type
1, the other types of code clones (e.g., Type 2, 3 and 4)
undergo different changes over time and gets complicated
to be detected by a simple string matching algorithm. For
example the identifiers or functions names may be changed,
some code statements may be added, modified or removed,
a portion of the code clones might undergo several other
syntactical changes or even the complete implementations
might be changed for the same functionalities in any other
locations and so on [11]. All these modifications over time
make the searching problem much more complicated [1].

In order to handle those complex source code structures
while still detecting all possible code clone pairs, the clone
detection tools undergo a lot of generalization of the original
source codes like pretty-printing [11], [1], normalization of the
identifiers [8], [11], forming syntax tree [14] of the code frag-
ments and so on, and often return pairs of code fragments those
are not essentially clones. These are pairs of code fragments
that are only coincidentally similar, or are otherwise considered
not a valid clone by users [15]. Besides, some research shows
that the definition of true positive code clones especially in
case of Type 3 and Type 4 clones are subjective and might
also be different for different users, domains, programming
languages or software systems [16], [17], [18].

For these case-specific considerations, users often need to
manually validate if the result is a true clone or not before
using this information for the given specific scenarios such as
source code refactoring or other software maintenance tasks at
hand [19], [18]. This manual validation process even becomes
a hindering factor as the software system evolves in size over
time [15] (e.g., research shows that JDK 1.4.2 contains 204
KLOC reported code clone which is 8% of the total total
lines of code [15], [19]. 15% of the total lines of code of the
Linux kernel has been reported as code clone which is 122
KLOC [20]). Recent studies focus and show that the usability
of the code clone detection tools can be improved significantly
by considering the user or requirement specific patterns in
addition to the general syntax level matching [21], [18], [22].

In this paper, we propose a machine learning based ap-
proach for predicting the user code clone validation patterns.
The proposed method works on top of any code clone detection



tools for classifying the reported clones as per user preferences.
The automatic validation process for a user, thus can accelerate
the overall process of code clone management and helps
faster acquiring of required information out of the clones
in comparison to time consuming manual validation process.
We also extend the proposed method with a cloud based
architecture to ensure compatibility of the proposed method
with any of the existing code clone detection tools.

A cloud based prototype system has been developed as
a proof of concept of the proposed method (available for
public use [23]), which shows an accuracy of up to 87.4%
when compared against the manually validated code clones
by multiple expert judges. In this paper, we also present our
experiments and evaluation results in multiple use-cases such
as, comparison to related existing methods, multiple code clone
detection tools, different open source projects, multiple ma-
chine learning algorithms and so on. From our investigations,
we got promising results in comparison to existing methods for
the code clone validation problem with different experimental
setups.

Our work makes three main contributions. First, we studied
the data distribution for the clone classification problem with
several extracted features. Our findings on these feature sets
and data distribution analysis can help better understand the
clone classification problem and thus adds the possibility of
further result improvement in this research area. Second, we
conducted detail comparative study with 12 different machine
learning algorithms for the clone classification. To the best of
our knowledge, no previous studies were done that focused on
a comparative study of different machine learning algorithms
for clone classification problem. Our observations on strengths
and weaknesses of several machine learning algorithms on
clone classification can contribute to the future research on this
area for further improvement of the learning model. Finally,
we present a cloud-based prototype system [23] which is
compatible with any existing clone detection tools as per the
concepts and framework of the proposed method.

II. PROPOSED APPROACH

The proposed method uses machine learning models for
predicting the user-specific code clone validation. The models
are first trained based on manually validated code clone sets
from the corresponding users. The trained models are then used
for improving the reported code clones from clone detection
tools, by predicting the user specific validation patterns. We
further extend the proposed method by providing a cloud
based architecture for taking advantages of high performance
computation and compatibility with any of the existing code
clone detection tools.

A. Clone Dataset: Software Systems

Detected clones from any subject software system can
be used for training the machine learning model. For our
experiments, we used clones from IJaDataset 2.0 [24] - a large
inter-project dataset of open-source Java systems. To test the
generality of the proposed method, 5 different publicly avail-
able and state-of-the-art tools namely NiCad [25], Deckard
[12], iClones [26], CCFinderX [8] and SourcererCC [27] were
used to detect clones separately out of the benchmark. We have
chosen to work on this dataset because a good number of recent

Fig. 1: Workflow of the proposed approach.

research works on code clones has been carried out on these
open source projects [27], [28], [29] and thus we can have a
common ground for evaluating the proposed approach.

B. Manual Code Clone Validation for Training

A subset of the reported code clones from the clone
detection tools are then provided to the user for manual
validation (e.g., Step 3, Figure 1). The corresponding user
validation results are stored in a database which is later used
for training the machine learning model. Reported clones from
clone detection tools are used to create clone database, K.
Clones from K, are manually marked as true or false positive
by the user. Reported code clones are thus grouped into two
disjoint sets Kt and Kf - representing true positive and false
positive clone groups respectively such that, K = Kt∪Kf and
Kf ∩Kt = ∅. Kt and Kf are used for training the machine
learning models. For our experiments, randomly 400 clone
pairs were selected from the used dataset (i.e., Section II-A)
and manually validated from each of the five clone detection
tools separately to mitigate any possible biases.

C. Feature Extraction

To target automatic validation even beyond Type 2 clones
while addressing the limitations of the existing methods (as
discussed in Section VII), we focused on extracting more infor-
mative features in addition to simple token sequence matching.

1 t r y {
2 i f ( a r g s . l e n g t h == 0) {
3 throw new E x c e p t i o n (
4 ” The f i r s t a rgument must be t h e

c l a s s name of a k e r n e l ” ) ;
5 }
6 S t r i n g a s s o c i a t o r = a r g s [ 0 ] ;
7 a r g s [ 0 ] = ”>” ;
8 System . o u t . p r i n t l n ( e v a l u a t e ( a s s o c i a t o r

, a r g s ) ) ;
9 }

10

Listing 1: Fragment 1.

1 t r y {
2 i f ( a r g s . l e n g t h == 0) {
3 throw new E x c e p t i o n (
4 ” The f i r s t a rgument must be t h e name

of a ”
5 + ” c l u s t e r e r ” ) ;
6 }
7 a r g s [ 0 ] = ” ? ” ;
8 C l u s t e r e r n e w C l u s t e r e r =

A b s t r a c t C l u s t e r e r . forName (
C l u s t e r e r S t r i n g , n u l l ) ; / / o b j e c t

from a b s t r a c t c l u s t e r e r
9 System . o u t . p r i n t l n (

e v a l u a t e C l u s t e r e r ( n e w C l u s t e r e r ,
a r g s ) ) ;

10 }

Listing 2: Fragment 2.

For feature extraction, we tried to mimic the human vali-
dation patterns as obtained from our investigation and related
works [18]. For example, Listing 1 and Listing 2 show the
code fragments of one of the detected clones from Weka
[30] software system, that needs to be validated. Although
the code clone fragments exhibit enough similarities to be
detected by code clone detection tools, the human validation



preferences may be impacted by different factors and vary
from user to user [18]. For example, line 1-3 of the code
fragments exhibit Type 1 clone, line 4 exhibit Type 2 clone,
while line 5 and beyond shows the existence of Type 3 code
clones. Code similarity for these multiple clone types might
significantly differ in influencing the user-specific validation
decision. While the code clone detection tools in general work
via simple syntax or structure level matching [1], [8], [12], [13]
without any such preference considerations, the related existing
token sequence based clone validation approaches targeted
Type 2 clones mainly [18]. With an attempt to validating
beyond Type 2 clones, feature extractions were considered by
three levels of code clone normalization independently. For
example, code fragments similarity followed by only removing
any comments (e.g., in line 8 of Listing 2) and pretty printing

1 t r y {
2 i f (X.X == 0) {
3 throw new X(
4 ” s t r i n g ” ) ;
5 }
6 X X = X [ 0 ] ;
7 X[ 0 ] = ” s t r i n g ” ;
8 X.X.X(X(X, X) ) ;
9 }

10

Listing 3: Trans. frg. 1.

1 t r y {
2 i f (X.X == 0) {
3 throw new X(
4 ” s t r i n g ”
5 + ” s t r i n g ” ) ;
6 }
7 X[ 0 ] = ” s t r i n g ” ;
8 X X = X.X(X, n u l l ) ;
9 X.X.X(X(X, X) ) ;

10 }

Listing 4: Trans. frg. 2.

denotes the degree of Type 1 relation among the subject clone
pairs. Similarly, Listing 3 and Listing 4 show the transformed
clone fragments from Listing 1 and Listing 2 respectively,
after first blind renaming of identifiers and then applying
consistent normalization of literals [31]. These transforma-
tions allow the corresponding modifications of literals and
identifiers and thus provide similarity feature information for
the targeted clone pairs. We used TXL [31] for the required
pre-processing and source transformations. The correspond-
ing numerical similarity value between the two code clone
fragments f1 and f2 is then calculated as, ξ(f1, f2) = 1 −
max(C(Od)/|f1|, C(Oi)/|f2|), where C(O) and |f |, repre-
sent the counts of minimal changes required to transform from
one clone fragment to another and length of the corresponding
code clone fragment respectively.

We also used several other features to get more structural
information about the two code clone fragments. For example,
our intuition was if the code clone fragments are significantly
different in sizes, human validator may be more likely to mark
them as false positive. The difference, |α−β| was considered
as one possible feature, where α and β represent the sizes of
code fragments. However, for a smaller code clone pair versus
a larger code clone pair the considerations might be different.
So the average size of the code clones (α + β)/2, were also
considered. That average value captures sort of the size of the
clone and difference captures if the code fragments are rather
mismatched in size.

Some of the popular code clone detection tools use source
transformations like consistent renaming of identifiers, normal-
ization of literals and so on, as part of their workflow for
code clone detection [1]. While for a subset of our extracted
feature set we use similar source transformation, our work is
significantly different from those code clone detection tools
in terms of targets and final feature set calculation. Code
clone detection tools generally use these source transformation
for code fragment comparison (for example, token sequence
matching). However, we used these source transformation as

an intermediate steps for a subset of feature calculation and
also used for learning human validation patterns unlike string
sequence matching adapted by code clone detection tools.

To the best of our knowledge no previous works on clone
validation used similar feature set, hence before finalizing the
feature selection for building the machine learning models,
we conducted several studies on data distribution with the
extracted features. Table I shows a summary of the feature
set from our study on data distribution (Section III).

D. Training Machine Learning Models for Clone Classifica-
tion

As we have presented the workflow of the proposed method
in the above discussion, it uses supervised machine learning
algorithm for learning the classification pattern of the user
specific clone validation (i.e., Figure 1, Step 6). The supervised
classification algorithm are trained on the manually validated
datatset K = {(x1,y1), (x2,y2)...(xm,ym)}, for xi ∈ Rn
and yi ∈ Rl, where n and l represent the extracted clone fea-
ture set and clone validation labels respectively. The machine
learning algorithm is then trained on dataset K, to learn a
function f , such that f can map from Rn to Rl, representing
the class probability for being true or false positive for the
given pairs of code clones.

We got best result using Artificial Neural Network (ANN)
from our study on multiple machine learning algorithms (Sec-
tion IV) for clone classification. From the training dataset
K, for xi ∈ Rn in the input layer, yi ∈ Rl in the output
layer and one hidden layer with k nodes, ANN learns the
function:f(x) = σ(W ᵀ

ho · σ(W ᵀ
ih · x + θh) + θ0) where,

Wih ∈ Rn×k and Who ∈ Rk×l denotes the connection
weights from the input layer to the hidden layer and hidden to
output layer respectively. θ and σ denotes the layer bias and
neuron activation function respectively. For the training phase
the Neural Network was run with different values of k (to
investigate the optimal network configuration), for a number
of epochs until it converges with a maximum limit of 1000
epochs. Softmax activation function was used for the output
layer. The model was trained and tested using 10-fold cross
validation. The Neural Network converged within a range of
500 to 600 epochs for k = 107, giving an accuracy of 87.4%.

E. Configuring the Prediction Decision

The machine learning models classify the test code clone
pairs using the extracted feature vector, xt. Probabilistic clas-
sifiers learns a function f , such that f(xt), assigns probability

TABLE I: Features Based on Distribution Analysis.

Feature Distribution Mean Difference, ∆µ

Line Sim. (Type-1 Norm.) 0.3998

Line Sim. (Type-2 Norm.) 0.3701

Line Sim. (Type-3 Norm.) 0.3602

Token Sim. (Type-2 Norm.) 0.3447

Token Sim. (Type-1 Norm.) 0.3105

Token Sim. (Type-3 Norm.) 0.2537

Function Intersected 0.2364

Unmatched Braces 0.2078



values, ŷt for the two classes, where Pr[yt = (1, 0)], repre-
sents the probability of belonging to true positive clone class. A
decision threshold γ[0, 1] is used to tune the validation output
quality (i.e., Step 8, Figure 1). A test clone pair is reported as
true positive if Pr[yt = (1, 0)] ≥ γ. The default value of γ is
set to 0.5 for deciding the clone validation (i.e., classified as
true positive code clone if Pr[yt = (1, 0)] ≥ Pr[yt = (0, 1)]).
So, on setting this γ value towards its upper limit (i.e., 1.0),
the validation becomes more strict for classifying clones and
will return only those clone pairs having higher probability
of being true positive clones. Similarly, one can decrease the
value of γ to make the proposed method more tolerant for
classifying the clones in true positive class.

Fig. 2: Cloud model for compatibility with existing code
clone detection tools.

F. Cloud Architecture for Clone Classification

In addition to using the trained model locally for code
clone classification, we also extend the proposed method with
a cloud based architecture for several additional advantages.
Figure 2 shows an overview of the architecture. Reported
code clones from a target code clone detection tool are sent
to the server for validation using HTTP request. The request
mainly contains the targeted code clone pairs that need to be
validated. The request can optionally contain some additional
information to be used by the proposed method. For example,
the classification models to use, possible configuration for the
classification model, language of the code clone source code
and so on. The communication with the server is done using
JavaScript Object Notation [32] (i.e., in key-value pairs as an
example shown in Figure 2). On receiving the subject clones
to validate, the required features are extracted to build feature
vector xt, which is then used by the trained machine learning
model to get the probability score f(xt). The corresponding
scores are then sent back to the clone detection tool for
displaying validated result in the user end. There are several
opportunities and advantages of the cloud deployment, such
as, compatibility with any existing clone detection tools (i.e.,
via RESTful web services) , improvement in the training phase,
opportunities for higher processing power and so on.

(a) Histogram of code fragment
size average.

(b) Histogram of syntactical
similarity by line.

(c) Syntactical sim. by line vs
token.

(d) Histogram of syntactical
similarity by token.

Fig. 3: Classification result analysis for different types of
code clones

III. STUDY ON THE DATA DISTRIBUTION

Machine learning algorithms try to recognize any available
underlying patterns using feature set from a given dataset.
Hence, feature distribution study is important and helps to
better understand the classification problem [33]. Here we
present our experimental studies on the underlying data distri-
bution analysis in terms of extracted features of the proposed
approach (Table I), which is also a contribution of our work
for better understanding the clone classification problem and
future improvement in the research domain.

We analyzed the extracted feature of the code clone pairs
for both true positive and false positive manually validated
clones in an attempt to find its contribution score for clone
classification. Figure 3a shows the distribution of the average
code clone fragment feature for the true positive and false posi-
tive clone classes. From the figure, we see that the average code
fragment size shows much randomness, both for true positive
and false positive clones. The distribution of this feature almost
overlaps with one another for the two classes: true positive and
false positive code clones. This overlapping pattern suggests
that this feature represents a minimal information about the
human validation pattern in two classes and thus yields a
very low possible contribution score for training the machine
learning algorithm for validation.

Besides for extracting some other features, we normalized
the code clone pairs by 3 levels, namely: Type 1, Type 2
and Type 3. Then for each level of normalizations, syntactical
similarity was measured both by lines and by tokens, for the
clone pairs resulting 6 different possible features (as discussed
in Section II-C). To visualize any underlying distribution of
the features their normalized histogram were plotted both for
true positive and false positive clones. Figure 3b shows one
of such plottings that is based on the similarity measured by
lines after Type 1 code normalization. It is noticeable from
the figure that the distribution of the feature is comparatively



better than the average code fragment line feature in terms
of validation. Although the distribution of true positive and
false positive clones are not completely linearly separable with
this feature, still the two classes are somewhat distinguishable.
The distribution indicates a possible better contribution score
for the human validation prediction than the average clone
fragment sizes. Figure 3d also shows somewhat similar results
in case of syntactic similarity measured by tokens after Type
1 Normalization of the code fragments.

We also carried out several studies to find out any un-
derlying relationships between different features for possible
clustering of the two clone classes. For example, we tried to
figure out if there are any underlying relationships available
for different types of similarity measures that can give any
potential information about the clustering of the two clone
classes. We plotted our several study result for visualization in
an attempt to notice any distinguishable separation or clusters.
Figure 3c is one of such study results that shows the scatter
plot on syntactical similarity measured by line versus tokens
after Type 1 Normalization of the code clone pairs. While the
investigation results suggest absence of any distinguishable
cluster, the feature distribution mean difference, ∆µ (Table
I) shows some positive results and hence promote usage of
classification algorithms for the clone classification problem.

IV. MACHINE LEARNING ALGORITHMS: A
COMPARATIVE STUDY

Although we got the best result for classification with
ANN (hence used it in our proposed method, Section II-D)
and conducted several experiments (Section V) with proposed
method, here we present a comparative study of 12 differnt
machine learning algorithms.

A. Bayes Classifiers

From the extracted code clone feature vector x =
(x1, x2, · · · , xn), we experimented with Naive Bayes Classifier
- a conditional probability model [34], for classification of the
clonesets into two clone classes - CT and CF , representing true
and false positive validated clone classes respectively. We used
kernel density estimation [34] for the likelihood calculation as
most of the selected feature values are continuous numerical
values. With the described configurations the classifier showed
an accuracy of 83%, with 0.831 and 0.830 of precision
and recall respectively. However, it can often be a strong
assumption by the classifier to consider independence among
the extracted features (i.e., as Naive Bayes) for a given class C,
for the clone classification problem. Because, by the definition
of the code clones [1], it is usual that part of a Type 2 clone can
contain Type 1 clone. Similarly, Type 3 clones can also contain
fractions of Type 2 or Type 1 clones. So by induction, it is
expected that the extracted similarity features for a given clone
class have some sort of correlation among them [18]. Figure 4
illustrates the correlation among some of the extracted features.
As it is noticeable from the figure, the clone structural features
such as average line, line differences and so on show relatively
lower correlation with other features. However, the extracted
similarity based features among clone pairs after different
levels of normalization show significantly higher correlation
among them. From these findings, we also experimented with
Bayesian Network Classifier [35] - that considers and learns

Fig. 4: Correlation among feature subset.

the possible dependency relations among the features. Unsu-
pervised learning was used (e.g., via Minimum Description
Length (MDL) [36] scoring method) to build the dependency
network among the features.

Although Bayesian Network tries to mitigate the strong
assumption made by the Naive Bayes, we found that the two
classifiers perform relatively the same for the clone classifica-
tion problem with the used features. In fact, in some cases,
Naive Bayes outperformed the Bayesian Classifier (e.g., as
illustrated in Figure 5). The behaviour is not totally unexpected
though, as Friedman et al. [35] showed a detailed study on
this. Errors while learning the dependency network from the
training set was presented as possible reasoning for such
behaviour.

B. Decision Tree Classifiers

For predicting the target variables, these classifiers build
decision tree from the input variables of the used feature
vector, x [37]. The internal nodes of the tree correspond to
different input variables. The values of the corresponding input
variables define the edges connecting nodes and each leaf
denotes different target variable for the classification. Pruned
C4.5 decision tree [38] showed an accuracy of 84%. The
obtained precision and recall are 0.849 and 0.848 respectively.
Random Tree - a variant of the classifier considers K random
input variables at steps for generating the decision tree [37].
The obtained accuracy for clone validation was 79%.

TABLE II: List of Operations used to Create Artificial Code
Clones via Mutation Framework [39].

Clone Types Modification Operations

Type-1
Addition/Removal of white-space
Changing the code comments
Addition/Removal of newlines

Type-2
Systematic renaming of identifiers
Arbitrary renaming of identifiers
Change in value of literals

Type-3
Insertion/Deletion within lines
Insertion/Deletion of lines
Modification of whole lines



TABLE III: Result on Artificial Code Clones.

Accuracy Precision Recall F1-Score
90% 0.89 0.99 0.93

Fig. 5: Exploring the classification performance of multiple
machine learning algorithms.

V. EXPERIMENTS AND EVALUATIONS

A. Implementation Details

We developed a cloud based framework as per the proposed
method for machine learning based automatic clone validation
and also experimented with its performance in different exper-
imental setups [23] 1. For collecting the user-specific training
data, a cloud based web application was first developed. We
used Python 2.7, as the server side language. The web appli-
cation was developed using Flask [40] - a microframework
for Python. The system server can be populated by code
clones reported by different code clone detection tools for
user-specific validation. The system iteratively displays the
code clones to the users for manual validation. We used
CouchDB [41] - a NoSQL database system, that supports
easier scaling up and distributed computing for Big Data. We
selected CouchDB to take advantage of this feature of the
database for handling large amount of code clones in our future
works.

B. Experimental Evaluation on Artificial Clones

Evaluation of code clone related tools and techniques can
often be critical as the validation of some of the types of code
clones as true or false positive vary significantly from person
to person [16], [17]. So to get more concrete information
about the validation accuracy by the trained model, we were
interested of evaluating the system with artificially generated
clones before testing on real clones from different software
systems (e.g., as presented Section V-C). We used Mutation
Framework [39] for creating such artificial code clones. The
framework takes a code fragment as input, performs mutation
by random edit operations on the code fragment and inject the
resultant fragment to artificially create a clone pair.

We used nine different mutation edit operations on the
source codes as listed in Table II. These operations create

1Cloud based prototype system: http://p2irc-cloud.usask.ca/ccv, GitHub:
https://github.com/pseudoPixels/ML CloneValidationFramework

three different types (Type-1, Type-2 and Type-3) of true
positive clones which are mostly simpler, straight forward and
void of any subjective biases by the individuals. We used
different original code fragments from BigCloneBench [42] to
create 3750 such artificial true positive code clone pairs. Our
target was to test the performance of the proposed method
on validating those artificial true positive clones, so along
with them we mixed 840 randomly selected false clones from
dataset. We then applied the proposed method on the clones
for validation. We got comparatively better accuracy on these
artificially created clones as shown in Table III. The possible
reasoning for this relatively higher performance is that, while
the artificially created clones are void of subjective biases, they
are often very similar to one another and comparatively easily
distinguishable.

TABLE IV: Used Clone Detection Tools for the Experiment.

CDT Ver. Tool Configuration

iClones [26] 0.2 mintokens = 50, minblock = 20

NiCad [11] 4.0 blocks, 30%, 6-2500 lines, blind-renaming, abstract-literal

SimCad [43] 2.2 generous, 6+ lines, blocks

CloneWorks [28] 0.2 Type-3 Aggressive, 6 lines, blocks

Simian [44] 2.4 6 lines, ignore overlapping blocks, balances parentheses

Ctcompare [45] 3.2 50 tokens, 3 replacements

Fig. 6: Comparison of the proposed method with related
existing methods (across different software systems).

C. Evaluation on Different Software Systems: A Comparative
Study with Existing Methods

The proposed method shows a promising result with an
accuracy of 87.4% via 10-fold cross validation on the data set
as discussed in Section IV. The result also exhibits confidence
as the used dataset is comparatively larger and contains a
number of diverse software projects. However, we were also
interested to see how the proposed method works for different
software projects. We selected 12 completely different open
source projects that were not used in any of the previous train-
ing or testing phases. We used different code clone detection
tools (Table IV) for detecting the code clones available in those
open source software projects. The reported code clones from
code clone detection tools were then manually validated by
different users. Besides, to compare the performance of the
proposed method with similar existing method - FICA [18],



TABLE V: Comparison with Existing Systems.

Software System LoC clones
1

Avg. Lines
2

Avg. Tokens
2 FICA FICA Iterative Proposed Method

Precision Recall Precision Recall Precision Recall

Luaj 36155 15 79 0.969642857 0.629930394 0.97619047 0.769230769 0.979827089 0.945319741

Ucdetector 4388 11 67 0.951219512 0.549295775 0.971428571 0.478873239 0.895833333 0.883561644

Autocover Tool 3989 13 50 0.830188679 0.956521739 0.843137255 0.934782609 0.926315789 0.967032967

Upm-swing 13243 11 73 0.989690722 0.738461538 0.994923858 0.753846154 0.985971944 0.944337812

ipscan 7082 10 58 0.863247863 0.918181818 0.922330097 0.863636364 0.964912281 0.800970874

JavaGB 24211 9 58 0.784722222 0.875968992 0.792114695 0.856589147 0.9 0.861878453

JavaOcr 7699 18 90 0.970588235 0.76744186 0.973684211 0.860465116 0.988304094 0.933701657

JavaFileManager 25898 12 68 0.962962963 0.882352941 0.967254408 0.868778281 0.941807044 0.725235849

jMemorize 13109 10 44 0.926829268 0.619565217 0.933774834 0.658878505 0.91576087 0.828009828

FileBot 18369 11 59 0.765217391 0.946236559 0.791855204 0.940860215 0.969581749 0.676392573

JAIMBot 14096 12 83 0.993710692 0.619607843 0.98156682 0.835294118 0.987980769 0.825301205

JLipSync 3671 28 158 1 0.517241379 1 0.620689655 1 0.857142857
1 Some of results are combination of detected clones from multiple clone detection tools (as listed in Table IV)
2 Average per code clone fragment

we contacted and got the source code2 from the corresponding
authors.

The trained model was used for predicting the user clone
validation for each of the projects. Figure 6 illustrates the com-
parative accuracies for the existing and proposed approaches
for different software systems. As noticeable from the graph
the proposed approach showed better accuracies for most of
the systems. Besides, to test the result quality, system-wise

Fig. 7: Result quality comparison of the methods.

precision and recall were calculated for the approaches. The
obtained result has been presented in Table V. As some of the
values have been highlighted in the table, it is noticeable that
for most of the cases the precision and recall values of existing
methods are lower in comparison to the proposed approach.
The result is also noticeable in the box plot in Figure 7. The
box plot illustrates that the mean Precision, Recall or F1-
Score for the existing approaches are relatively lower than the
proposed. Besides, the plot also depicts a higher variation in
the result qualities for the existing approaches. In comparison,
the proposed method shows promising and consistent results
with lesser variation in the result qualities.

2Authors of FICA made the source code available for research purpose at
https://github.com/farseerfc/fica

D. Evaluation with Different Code Clone Detection Tools

As the proposed method works based on the clones re-
ported by different clone detection tools, it is also important to
evaluate its performance in conjunction with different clone de-
tection tools. We collected the clone reports from six different
clone detection tools based on open source projects. Besides,
as the clone detection result quality might vary greatly based
on the complexity or source code structure of a given software
system, to generalize we selected 500 clone pairs detected
by six clone detection tools (e.g., Table IV). Users reported
315 and 185 of them as true and false clones respectively
on their manual validation. We then applied the proposed
method to find out its validation performance. The obtained
result was: True Positive (TP) =311, False Negative (FN)
=4, True Negative (TN) =115 and False Positive (FP) =70.
It is noticeable from the experimental result that it could
successfully validate almost all the true clones with a precision
of 0.82 in comparison to the average precision of the tools
(0.63). This improvement can even be more useful for large-
scale software systems.

E. Evaluation of the Approach as a Clone Detection Tool Itself

While the proposed method works on top of detected pos-
sible clones as other existing state-of-the-art clone comprehen-
sion and management techniques [19], [18], [46], [47], [22],
[48], we were also interested to experiment the performance
of the machine learning model for detecting clones directly
on any target software systems. That is instead of pairs of
detected clones, extracted potential clones (i.e., smallest pieces
of codes for clone consideration [11]) from a software system
are passed through the learned model for the corresponding
validation prediction scores.

For the evaluation, the detected clones were then inde-
pendently validated by three expert judges. To mitigate any
possible biases in the validation process, we adopted voting
system among the judges for validation decision (i.e., a clone
pair is considered as true positive iff at least two of the judges
mark it as true positive independently and so on). The model
showed promising results as presented in Table VI for four
random software projects. The results also show impacts of
different tool configurations.



To further investigate the performance of the machine
learning model, judges were also asked to provide confidence
scores (i.e., in the range of [0,1]) for their validation decision
for the corresponding code clone pairs. The comparison of
the manual confidence scores (i.e., averaged across the judges
to mitigate biases) provides good insights for the comparison
against the model returned probability scores for clone vali-
dation. Figure 8 illustrates the comparison for some random
true positive clone pairs of two software systems. For majority
of the clone pairs, the graph shows promising convergence
between predicted and manual validation scores.

TABLE VI: Direct Clone Detection on Software Systems.

Software System LoC Min. Lines Max. Lines Thresh. Precision
aTunes 1352 11 700 0.75 0.95
Java OCR 1435 10 1200 0.75 0.89
JLipSync 103 12 1000 0.75 0.95
JHotDraw 6966 5 1200 0.5 0.71

Fig. 8: Machine learning prediction vs. user validation scores.

Fig. 9: Feature score via Chi-Squared test.

VI. RESULT DISCUSSION

One of the major criticisms of ANNs are their being black
boxes, since no satisfactory explanation of their behaviour
has been offered [33]. However, assuming the ANN as black
box in the middle of input sets and its predicted decision we
tried to find out if there is any biases on any feature for the
output decision. Based on the classified test samples by the
algorithm, we calculated feature contribution scores using Chi
Squared Test. If the score is too high for a particular feature
in comparison to the rest, then it gives some idea about the
Neural Network being biased to the particular feature. Figure
9 shows the normalized scores of some of the selected features
having higher scores out of all possible extracted features.

From the figure, it is noticeable that the normalized score
is kind of randomly distributed over the features rather than
being completely dominated by one or more features. This
demonstrates that the trained model is not noticeably biased
on any feature(s) on its decision making. Besides the top 3
scores are found to be Type 1, Type 2 and Type 3 code clone
similarities respectively which is kind of logical for the stated
clone validation problem. Chi-Squared test also supports these
findings as noticeable from its low corresponding feature score
in classification.

Another important aspect to analyze from the proposed
method classification result is to see if it fails or succeeds
only for particular type of clone(s). For example, it might be
that the model can only validate Type 1 clones and cannot
validate the other complex type of clones. Especially, Type
3 clone is different and difficult to validate in comparison to
Type 1 or Type 2 code clones. To analyze if there are any
such failure or success patterns for validation in the proposed
method, we plotted the classification result in 3D space where
the axes represent 3 different types of clones: Type 1, Type 2
and Type 3. The plotted results are shown in Figure 10. Figure
10a shows the scatter plot for the test samples along the 3 axes
each representing 3 different types of clone similarity. From
the plot we can notice the test samples are randomly scattered
in the 3D space representing the presence of all types of code
clone being available in the test samples. Figure 10b shows
the scatter plot of the test samples that our proposed method
misclassified. The randomness of the scatter plot suggests that
the proposed method did not fail to classify any particular
type of code clones. For example, if the algorithm would fail
to correctly classify all the Type 3 clones then in the scatter
plot all the misclassified test sample plot would more or less
align along the Type 3 Clone Similarity axis and so on. Besides
Figure 10c shows a single plane (e.g., Type 1 vs Type 2 plane)
of the plotting for easier visualization. From this plot, the
randomness is even clearly noticeable. From those study on the
misclassified test samples by the proposed method we can get
some information that it did not fail for any particular type of
clone. Similarly, the proposed method can successfully classify
all the three types of code clones as we can notice from the
randomness of the correctly classified test samples in Figure
10d.

VII. RELATED WORKS

Although several methods and techniques have been pro-
posed over the last years for maintenance, organization or
classification of code clones, a very few of them focused on
aiding the huge manual user specific validation task of the
reported code clones. Yang et al. studied the similar problem
for user specific code clone classification in their work -
FICA [18]. The user specific clone classification in FICA
is done by token sequence similarity analysis using ‘Term-
Frequency - Inverse Document Frequency’- (TF-IDF) vector.
As FICA learns user specific validation completely based on
token sequence the validation accuracy gets significantly lower
as the target clone goes beyond Type 2 as also noticeable from
their study.

Tairas et al. [19] used Latent Semantic Indexing (LSI)
on the identifiers of detected clone fragments by code clone
detection tools to classify the code clones based on their
functionality or semantic behaviours. Marcus et al. [46] and



(a) All test samples. (b) Misclassified test samples.

(c) Misclassified test samples
(2D view). (d) Correctly classified test

samples.

Fig. 10: Classification result analysis for different types of
code clones.

Kuhn et al. [47] worked on a similar problem of clone classifi-
cation based on the semantic topics of the detected code clone
fragments. Higo et al. [22] proposed a metric-based approach
for the classification of detected clones as per their re-factoring
opportunities. Svajlenko et al. [49] used unsupervised machine
learning based approach to cluster similar code clones. Kapser
and Godfrey [48] classified the detected clones based on their
location with respect to one another in the hierarchy files and
directories. However, it is noticeable from the above works
that the total number of clones to be manually analyzed for
the validation still remain the same. The overall result of such
code clone classification or comprehension techniques can be
improved significantly by adding a machine learning based
automatic validation process.

Several clone visualization techniques have also been pro-
posed to organize large amount of detected clones [50] such
as, scatter plot of the code clones [8], Hasse diagram [51], an
aspect browser-like view [19], hierarchical graphs of detected
clones [12] and so on. Note that, our proposed work can aid in
further management and understanding of the clones by adding
an extra dimension (e.g., predicted true or false positive) to
these existing visualization techniques. Besides, our presented
insights on human validation pattern can help better understand
clone detection problem and facilitate on further improvement
of machine learning models such as ANNs, Deep Learning and
so on for clone detection tools [52]. Wang et al. [53] proposed
a search based method find the optimal configurations of
code clone detection tools to tune their corresponding reported
clones. While their work is on establishing a general agreement
on code clone detection tools’ optimal configurations [18], our
work focuses on a different goal for automating the clone

validation process.
Besides, researchers often find it challenging to evaluate

any tools or techniques for clone detection due to the lack
of enough validated code clone benchmark. Because building
such benchmarks often contain possible threats to validity
due to unavoidable human errors and need a huge amount of
manual validation work. For example, Bellon et al. [10] created
one such benchmark by validating 2% of the union of six clone
detectors for eight subject systems that required 77 hours of
manual efforts. Svajlenko et al. created a benchmark of 78
thousands snippets that also reports huge amount of manual
effort requirement with 514 hours of manual validation efforts
of nine human judges [7]. So, the trained machine learning
model can be used to aid in creation of user specific validated
clone sets.

VIII. CONCLUSION

In this paper, we proposed a machine learning based
approach for automatic code clone validation. The method
learns to predict tasks or user-specific code clone validation
patterns. A prototype system [23], which was developed as a
proof of concept of the proposed method, showed promising
results in comparison to related existing methods for code
clone validation. We also evaluated the proposed system with
different users, clone detection tools, artificially created code
clones, open source projects and so on, and presented our
several insights such as performance of different machine
learning methods, data distribution analysis and so on for the
code clone validation problem. In future, we will explore the
enhancement of existing clone visualization techniques with
the aid of automatic code clone validation responses. Our
future work plan also includes scaling up the proposed method
for large scale code clone managements as we have presented
in the vision of the proposed method.

REFERENCES

[1] Chanchal K. Roy and James R. Cordy. A survey on software clone
detection research. Queen’s School of Computing TR, 541(115):64–68,
2007.

[2] Chanchal K. Roy and James R. Cordy. An empirical study of
function clones in open source software. In Reverse Engineering, 2008.
WCRE’08. 15th Working Conference on, pages 81–90. IEEE, 2008.

[3] Brenda S Baker. On finding duplication and near-duplication in large
software systems. In Reverse Engineering, 1995., Proceedings of 2nd
Working Conference on, pages 86–95. IEEE, 1995.

[4] Cory J Kapser and Michael W Godfrey. Supporting the analysis of
clones in software systems. Journal of Software: Evolution and Process,
18(2):61–82, 2006.

[5] Cory Kapser and Michael W Godfrey. ” cloning considered harmful”
considered harmful. In Reverse Engineering, 2006. WCRE’06. 13th
Working Conference on, pages 19–28. IEEE, 2006.

[6] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan
Wagner. Do code clones matter? In Software Engineering, 2009. ICSE
2009. IEEE 31st International Conference on, pages 485–495. IEEE,
2009.

[7] Jeff Thomas Svajlenko et al. Large-Scale Clone Detection and Bench-
marking. PhD thesis, University of Saskatchewan, 2018.

[8] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a
multilinguistic token-based code clone detection system for large scale
source code. IEEE Transactions on Software Engineering, 28(7):654–
670, 2002.

[9] Ekwa Duala-Ekoko and Martin P Robillard. Tracking code clones in
evolving software. In Software Engineering, 2007. ICSE 2007. 29th
International Conference on, pages 158–167. IEEE, 2007.



[10] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation of clone detection tools. IEEE
Transactions on software engineering, 33(9), 2007.

[11] Chanchal K Roy and James R Cordy. NICAD: Accurate detection
of near-miss intentional clones using flexible pretty-printing and code
normalization. In Program Comprehension, 2008. ICPC 2008. The 16th
IEEE International Conference on, pages 172–181. IEEE, 2008.

[12] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu. Deckard: Scalable and accurate tree-based detection of code
clones. In Proceedings of the 29th international conference on Software
Engineering, pages 96–105. IEEE Computer Society, 2007.

[13] Robert Tairas and Jeff Gray. Phoenix-based clone detection using suffix
trees. In Proceedings of the 44th annual Southeast regional conference,
pages 679–684. ACM, 2006.

[14] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection
using abstract syntax suffix trees. In Reverse Engineering, 2006.
WCRE’06. 13th Working Conference on, pages 253–262. IEEE, 2006.

[15] Zhen Ming Jiang and Ahmed E Hassan. A framework for studying
clones in large software systems. In Source Code Analysis and
Manipulation, 2007. SCAM 2007. Seventh IEEE International Working
Conference on, pages 203–212. IEEE, 2007.

[16] Iman Keivanloo, Feng Zhang, and Ying Zou. Threshold-free code
clone detection for a large-scale heterogeneous java repository. In
Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on, pages 201–210. IEEE, 2015.

[17] Alan Charpentier, Jean-Rémy Falleri, David Lo, and Laurent Réveillère.
An empirical assessment of bellon’s clone benchmark. In Proceedings
of the 19th International Conference on Evaluation and Assessment in
Software Engineering, page 20. ACM, 2015.

[18] Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji
Kusumoto. Classification model for code clones based on machine
learning. Empirical Software Engineering, 20(4):1095–1125, 2015.

[19] Robert Tairas and Jeff Gray. An information retrieval process to aid in
the analysis of code clones. Empirical Software Engineering, 14(1):33–
56, 2009.

[20] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale software code. IEEE
Transactions on software Engineering, 32(3):176–192, 2006.

[21] David Lo, Lingxiao Jiang, Aditya Budi, et al. Active refinement of clone
anomaly reports. In Proceedings of the 34th International Conference
on Software Engineering, pages 397–407. IEEE Press, 2012.

[22] Yoshiki Higo, Shinji Kusumoto, and Katsuro Inoue. A metric-based
approach to identifying refactoring opportunities for merging code
clones in a java software system. Journal of Software: Evolution and
Process, 20(6):435–461, 2008.

[23] G. Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and
K. Schneider. A Prototype System for Clone Validation. http:
//p2irc-cloud.usask.ca/ccv (pls. contact on issues).

[24] Ambient Software Evoluton Group. IJaDataset 2.0. http://secold.org/
projects/seclone.

[25] James R Cordy and Chanchal K Roy. The NICAD clone detector.
In Program Comprehension (ICPC), 2011 IEEE 19th International
Conference on, pages 219–220. IEEE, 2011.

[26] Nils Göde and Rainer Koschke. Incremental clone detection. In Soft-
ware Maintenance and Reengineering, 2009. CSMR’09. 13th European
Conference on, pages 219–228. IEEE, 2009.

[27] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy,
and Cristina V Lopes. Sourcerercc: Scaling code clone detection
to big-code. In Software Engineering (ICSE), 2016 IEEE/ACM 38th
International Conference on, pages 1157–1168. IEEE, 2016.

[28] Jeffrey Svajlenko and Chanchal K Roy. Cloneworks: a fast and flexible
large-scale near-miss clone detection tool. In Proceedings of the 39th
International Conference on Software Engineering Companion, pages
177–179. IEEE Press, 2017.

[29] Jeffrey Svajlenko and Chanchal K Roy. Fast and flexible large-scale
clone detection with cloneworks. In Software Engineering Companion
(ICSE-C), 2017 IEEE/ACM 39th International Conference on, pages
27–30. IEEE, 2017.

[30] Weka. Open Source Machine Learning Tools Collection. https://www.
cs.waikato.ac.nz/ml/weka/.

[31] James R Cordy, Charles D Halpern-Hamu, and Eric Promislow. Txl: A
rapid prototyping system for programming language dialects. Computer
Languages, 16(1):97–107, 1991.

[32] Douglas Crockford. The application/json media type for javascript
object notation (json). 2006.

[33] Christian Robert. Machine learning, a probabilistic perspective, 2014.
[34] George H John and Pat Langley. Estimating continuous distributions

in bayesian classifiers. In Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, pages 338–345. Morgan Kaufmann
Publishers Inc., 1995.

[35] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network
classifiers. Machine learning, 29(2-3):131–163, 1997.

[36] Wai Lam and Fahiem Bacchus. Learning bayesian belief networks:
An approach based on the mdl principle. Computational intelligence,
10(3):269–293, 1994.

[37] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[38] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers, San Mateo, CA, 1993.
[39] Jeffrey Svajlenko, Chanchal K Roy, and James R Cordy. A mutation

analysis based benchmarking framework for clone detectors. In Soft-
ware Clones (IWSC), 2013 7th International Workshop on, pages 8–9.
IEEE, 2013.

[40] Flask. A Microframework for Python based on Werkzeug, Jinja 2.
http://flask.pocoo.org/.

[41] CouchDB. Apache CouchDB - NoSQL Database System. http:
//couchdb.apache.org/.

[42] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy,
and Mohammad Mamun Mia. Towards a big data curated benchmark
of inter-project code clones. In Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on, pages 476–480.
IEEE, 2014.

[43] Md Sharif Uddin, Chanchal K Roy, and Kevin A Schneider. Simcad:
An extensible and faster clone detection tool for large scale software
systems. In Program Comprehension (ICPC), 2013 IEEE 21st Interna-
tional Conference on, pages 236–238. IEEE, 2013.

[44] Simian. Code Clone Detection Tool. http://www.redhillconsulting.com.
au/products/simian/.

[45] Warren Toomey. Ctcompare: Code clone detection using hashed
token sequences. In Software Clones (IWSC), 2012 6th International
Workshop on, pages 92–93. IEEE, 2012.

[46] Andrian Marcus and Jonathan I Maletic. Identification of high-level
concept clones in source code. In Automated Software Engineering,
2001.(ASE 2001). Proceedings. 16th Annual International Conference
on, pages 107–114. IEEE, 2001.

[47] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı́rba. Semantic clustering:
Identifying topics in source code. Information and Software Technology,
49(3):230–243, 2007.

[48] Cory Kapser and Michael W Godfrey. Aiding comprehension of cloning
through categorization. In Software Evolution, 2004. Proceedings. 7th
International Workshop on Principles of, pages 85–94. IEEE, 2004.

[49] Jeffrey Svajlenko and Chanchal K Roy. A machine learning based
approach for evaluating clone detection tools for a generalized and
accurate precision. International Journal of Software Engineering and
Knowledge Engineering, 26(09n10):1399–1429, 2016.

[50] Minhaz F Zibran and Chanchal K Roy. The road to software clone
management: A survey. Dept. Comput. Sci., Univ. of Saskatchewan,
Saskatoon, SK, Tech. Rep, 3, 2012.

[51] J Howard Johnson. Visualizing textual redundancy in legacy source. In
Proceedings of the 1994 conference of the Centre for Advanced Studies
on Collaborative research, page 32. IBM Press, 1994.

[52] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder.
Cclearner: A deep learning-based clone detection approach. In Soft-
ware Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on, pages 249–260. IEEE, 2017.

[53] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. Searching
for better configurations: a rigorous approach to clone evaluation. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 455–465. ACM, 2013.


