
Workflow Provenance for Big Data:
From Modelling to Reporting

Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

Department of Computer Science, University of Saskatchewan
{rayhan.ferdous, banani.roy, chanchal.roy, kevin.schneider}@usask.ca

Abstract. Scientific Workflow Management System (SWFMS) is one of
the inherent parts of Big Data analytics systems. Analyses in such data-
intensive research using workflows are very costly. SWFMSs or workflows,
keep track of every bit of executions through logs, which later could be
used on demand. For example, in the case of errors, security breaches or
even any conditions, we may need to trace back to the previous steps or
look at the intermediate data elements. Such fashion of logging is known
as workflow provenance. However, prominent workflows being domain
specific and developed following different programming paradigms, their
architectures, logging mechanisms, information in the logs, provenance
queries and so on differ significantly. So, provenance technology of one
workflow from a certain domain is not easily applicable in another do-
main. Facing the lack of a general workflow provenance standard, we
propose a programming model for automated workflow logging. The pro-
gramming model is easy to implement and easily configurable by domain
experts independent of workflow users. We implement our workflow pro-
gramming model on Bioinformatics research- for evaluation and collect
workflow logs from various scientific pipelines’ executions. Then we focus
on some fundamental provenance questions inspired by recent literature
that can derive many other complex provenance questions. Finally, the
end users are provided with discovered insights from the workflow prove-
nance through online data visualization as a separate web service.

Keywords: Scientific Workflow Management Systems, Workflow Provenance,
Logs, Modular programming, Provenance Programming Model

1 Introduction

In Big Data analytics, the whole analysis process always go through Big Data
analytics lifecycle [12], [9]. In each step of the lifecycle, a specific fashion of
analysis is projected on the data which is/are derived from the previous step/s.
Such fashion of analysis creates the necessity of using common data analysis
tools over the whole process. Thus re-usability of data analysis tools becomes
important. On the other hand, distributed and high performance computing
technologies are necessary in data intensive research areas. They are provided
through web services enabling collaboration. Better scientific workflow systems

2 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

or simply workflows leverage all these features and provide data scientists with
cutting edge and most updated data analytic services- to implement data inten-
sive pipelines [6], [18], [25], [19].

Big Data analytics deals with unstructured data and has to produce compre-
hensive information about different datasets from different sources. Such com-
prehensive information is more valuable than information of any single dataset
[9]. Data provenance is the way of associating subject data with related log data
during an analysis process. Such logs can be used to regenerate data lineage.
Lineage of data is necessary to answer any question associated with the data
source, configuration related to its analysis, any error or anomaly, its changes
over time, process based information related to the data and so on. Data prove-
nance itself has many different categories [7], [14], [8], [23], [11]. Any workflow
itself, processes data through simple to complex pipelines. Such workflow pro-
cess logs are called workflow provenance. In workflow provenance, the pipeline
modules are considered as black boxes and internal operations are not taken into
account. Data elements are both input and output of any module [2]. In case
of any errors, unwanted behaviors of the analysis/security problems, or even to
investigate particular data/process condition- the workflow cannot be just shut
down/restarted. Data intensive task management does not allow such operations
because only a single analysis run may need significant amount of time, mem-
ory and processing power to finish. Thus, tracing back the problem or condition
using the logs becomes necessary. Backtracking dataflow events and situations
also become important for further deeper investigation [2], [13]. A workflow sys-
tem offering workflow provenance enables such investigations. For example, the
provenance information could be used to answer the questions- ‘What par-
ticular parameter setting is responsible for a target error?’, ‘Which
type of data element is most used for a particular module?’, ‘What
is the source dataset of an intermediate data element?’ and so on. So
clearly, provenance analysis is the further analysis of data product that is derived
from previous analyses and workflow runs. Big Data sources generating such
provenance data, create variety (unstructured data) in those provenance data
products. Thus workflow provenance itself becomes another Big Data problem.

Workflow systems are provided with a highly/loosely coupled provenance ser-
vices [11]. Their logging mechanisms also vary significantly because of domain
differences [11], [23]. In this era of Big Data analytics, we have already entered
such a period where cross domain research and collaboration is taking place
among researchers. Consequently, scientific systems like workflows also need to
feature cross domain facilities and collaboration. The problem is, one workflow
system which is best for a certain domain is not best for another. As already
mentioned, different workflow systems’ architectures differ significantly on differ-
ent aspects. So, fusing any two workflows into one with their provenance features
is not very easy. We focus only on workflow provenance and face the lack of a
general and standard model for answering provenance questions. Working with
any workflow also requires minimum amount of domain expertise. So, it is also
necessary to separate all the concerns as much as possible while developing such

Workflow Provenance for Big Data: From Modelling to Reporting 3

a standard workflow model. For example, provenance logging configuration can
be handled by data scientists and only workflow implementation can be handled
by developers.

In order to overcome the above problems, in this paper, we propose a pro-
gramming model for workflow provenance. We build the programming model
solely based on Object Oriented Programming model and inspired by existing
novel workflow models [2], [1]. Thus it is easy to implement with less learning
curve by any developer with minimum programming experience. We define dif-
ferent workflow components (e.g. Data, Module, Condition and Dataflow) to
offer various workflow features such as, concise way of building pipelines, incor-
porating conditionals and so on. The model is designed in a manner that enables
automated logging of workflow provenance data [5]. The logging mechanism is
not only fused with the programming model, but the log structure is also easily
configurable by a domain expert without modifying the model. So, while im-
plementing any pipeline with the model, there is no burden of log management.
This is how we separate the concerns of logging and workflow development in our
approach. Besides, necessary data analysis tools can be easily and independently
implemented with our model by any developer of a certain domain. They can
later be used just as a tool. In summary, our model offers and makes everyone
related to a workflow system to work in a systematic procedure that makes use
of the SoC (Separation of Concerns) design principle [17]. Furthermore, it can
be extended to scalability for Big Data analytics with prominent technologies
(e.g. Hadoop [22], Apache Spark [26] and so on). Any Domain Specific Language
(DSL) can be used on top of our programming model layer to facilitate further
domain specific features. Then all the features of our programming model will
be carried to that DSL automatically. The whole idea is illustrated as a layer
based architecture in Figure 1. Here, the OOP layer is the base layer of the whole
system that can be further extended with any technology from the Extension.
The programming model is built on the OOP model. Logging Configuration
is in the same layer of the modelling but also independent from the proposed
model. Any DSL could be built on the proposed model. Various tools could
be presented at the top Tool layer. The workflow user directly uses the tools
and model developer directly uses the OOP model to develop/extend the pro-
posed programming model. Domain expert can independently configure logging
configuration independent of any model developer or user.

Finally, to evaluate our provenance model, we will develop tools and pipelines
from Bioinformatics. We gather a bunch of log data through simulations to use
our proposed model- to implement workflow tools and pipelines. We also focus
on the logs to discover important insights related to provenance. So, we tar-
get a number of provenance questions [3], [20] and analyze how much we can
answer those questions from the logs that are further described in Section 2.3.
A future work is to find out all the elementary provenance questions. By ele-
mentary provenance questions we indicate such provenance questions that are
atomic/fundamental and can be used to derive any other provenance questions
including advanced ones. Finally, all these findings can be provided to the end

4 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

Object Oriented Programming Model

Proposed Programming
Model

Tools

DSL

Extension
(Hadoop, Spark etc.)

Logging
Configuration

Workflow
User

Domain
Expert

Model
Developer

uses

uses

uses

OOP Layer

Modelling
Layer

DSL Layer

Tool Layer

User Layer

Fig. 1: A layer based architecture for our proposed programming model

users in a meaningful way such as data visualization or reporting [21], [9]. We
are developing a data provenance visualization service that will be offered as a
web service. It will connect itself with the workflow system to facilitate online
streaming log data analysis. SoC is again followed here and even only this vi-
sualization service can be further developed independently. Prominent machine
learning tools and deep learning methods can be integrated with this visualiza-
tion system to conduct big log data analytics. Consequently, all the components
associated with the whole system will provide with distinct online services. The
distinct services and their internal communication architecture is illustrated in
Figure 2. In this prototype of Figure 2 the user directly uses the workflow system
with all enabled features inside it and the online visualization service as well.
The workflow process logs are saved in a database that are parsed through a
parser. The logs can only be written in the database and the parser can only
read from the log database. The visualization or reporting service reports the
users using the online parser data based on their needs.

2 Research Methodology

Our work contains several phases. Each of the phases is divided into different
sub-phases and covers versatile topics of research and development. Those phases
are briefly described below.

Workflow Provenance for Big Data: From Modelling to Reporting 5

Workflow System
(Tools, DSL, Proposed Model,

OOP, Extension)

Logs

Online
Parser

Visualization
Service

(Reporting)

User

Fig. 2: System components services architecture

2.1 Modelling Phase

This phase covers the design and implementation of the programming model
itself.

Designing Log Structure The structure of log is designed. This design can
also vary. We primarily focus on plain text based logs. For certain reasons, other
file formats can be useful. We will conduct a comparative study on which way
is the best in a certain scenario.

Designing Programming Model We design the programming model and
define certain workflow components. Such as, Data (that are classified into sub-
categories), Module , Dataflow , User and Conditions at the moment and
can be extended further.

Featuring Automated Logging The programming model is then integrated
with the logging mechanism with latest logging technologies. We fully engineer
the mechanism to make it automated.

6 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

Facilitating Data Management The logs are primarily saved as flat files and
they can also be saved into database. We use NoSQL Database technology in
this context. To enable online data streaming for any component, choose to use
Apache Spark [26] and any related frameworks/technologies.

2.2 Implementation Phase

Implementation phase relates to make the developers use the programming
model for building workflows. Also a number of workflow tools are developed
and pipelines from different angles are implemented.

Configuring Logs The logs are easily configured by any domain experts. De-
velopers do not need to touch the configurations.

Implementing Analysis Tools Analysis tools are implemented by a group
of tool developers (e.g. image processing tools, statistical tools, data cleansing
tools and so on). While converting their tools following our model, a migration
of development happens. We design our model in a manner that the migration
hassle is reduced and the task follows a similar pattern.

Layering with DSL A DSL can be layered upon our programming model.
This way, all our model features are brought to the DSL layer. On top of it, the
DSL provides more flexibility to develop workflows.

Designing Pipelines Pipelines and consequently complex workflows are de-
signed and implemented using the DSL at this phase. This will generate log data
for analysis.

2.3 Analysis Phase

This phase is about the generated logs and their analysis. The task of this phase
is to discover as much provenance insights as we can and provide them to the
end users in a standard way.

Parsing Logs Logs are parsed with our simple parser. These logs are semi-
structured data because they are structured and also hold unstructured data.

Extracting Pipelines We leverage the power of Graph Database technology
to re-extract the executed workflows and pipelines from previous phases. This
way, all the features of Graph Database are integrated in our system.

Workflow Provenance for Big Data: From Modelling to Reporting 7

Querying Provenance We focus on a number of provenance questions from
different angles. They cover questions about data lineage, user-data, data-module
or user-module patterns, errors and anomalies, information retrieval and recom-
mendation.

Workflow Provenance Questions:

– What are the inputs of a module in an execution?
– What are the parameter settings of a module in an execution?
– What are the outputs of a module in an execution?
– What is the type of a data element in a workflow?
– What is the DAG (Directed Acyclic Graph) representation of a workflow?
– Who is the user of a workflow component (module/data)?
– What are all the properties of a workflow component (module/data/user)?
– What is the lineage DAG representation of a data element from root source

to data product?
– What is the user defined condition of a module for its true execution?
– What is the time series data for any workflow component (module/data/user)

with respect to a certain property?
– What is the DAG representation of a workflow for an error?
– What are all the properties of a workflow component (module/data/user)

for an error?
– What is the classification of related modules in a workflow system?
– What is the classification of related data elements in a workflow system?
– What are the module-module, data-data, user-user, module-data, module-

user, and data-user usage patterns in a workflow system?
– What is the best visualization approach for a particular provenance question?

Reporting or Data Visualization Building a web service that can analyze
online streaming log data from the log database of a workflow system is possible.
The reporting can be done with data visualization techniques using modern
technologies.

8 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

#import l i b r a r i e s
from ProvModel import Object , Module

#A module to doub le the input data

#Inh e r i t Module
class Double (Module) :

#Define body
def body (s e l f) :

#P i s a l i s t o f parameters
#Get va lue o f 1 s t parameter
a = s e l f .P [0] . r e f
c = a + a
#Return output as model o b j e c t
r e s = Object (c)
return r e s

#A workf low to doub le a data va lue
#d1 −> Double −> d2

#Create a data o b j e c t ho l d ing va lue 111
d1 = Object (111)
#Define a pre−b u i l t module
double = Double (d1)
#Run the module
#Output data in d2
d2 = double . run ()

Listing 1.1: A pipeline implementation with our model

111 Double 222

Fig. 3: A pipeline that doubles the input to output

Workflow Provenance for Big Data: From Modelling to Reporting 9

User

Domain
Specific

Language

Workflow

Python
Interpreter

External
Tools

Library
Tools

External
Database

Library
Database

ProvMod

Domain
Expert

Graph
Database

External
Developer

Query
Engine

?

Logs

Query

Python

JSON

Neo4j

Cassandra

Cloud Servce

D3

Logging
Configuration

RESTful Web
Service

Cypher Query
Language

Fig. 4: Implementation of ProvMod and relation between other components of
the whole workflow system that we propose

3 Implementation Details

The implementation of ProvMod is provided in Figure 4. The user uses a work-
flow through the user interface. Through the user interface, they may use a DSL
to implement their workflows that stands on the ProvMod model. ProvMod
stands on Python Interpreter at the core. The logging configuration can be cus-

10 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

tomized by a different user who is an expert in the domain. External tools can be
integrated with ProvMod that can even be developed by other users. ProvMod
also offers a number of tools as Library Tools. External tools and Library Tools
may have their own database facilities. The ProvMod, leveraging the power of
Python Programming Language and Logging Configuration, saves the logs in
a Graph Database that we implemented with Neo4j [24]. Through the user in-
terface, the user may later submit a query through a query engine. The query
engine uses Cypher Query Language to parse logs from the Graph Database.
The query result is provided with D3 in a web browser. All the communication
between each pair if components is done through RESTful Web Services [10]. We
also emphasize using NoSQL database such as Cassandra [16] for Library Tools.
An example of the pipeline in Figure 3 is provided in Listing 1 code snippet.

4 DNA
Sequences

2 .fastq
files

1 .fq
file1 .bed

file

1 .fa
file

Fig. 5: Experimental dataset overview

Workflow Provenance for Big Data: From Modelling to Reporting 11

Fig. 6:
A portion of the provenance graph from the simulation. This snapshot is taken
from the the big graph view of Kibana implementation. Different node types

are represented with different colors with zoom in and out feature. The overall
view is showing how big graphs can be used to capture provenance graph

patterns.

12 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

Entropy
value

Genes

DNA
Letter
Count

Gene
length

Count
A

Count
T

Count
C

Count
G

MaxMin
Prob

Entropy

Base
1

Base
2

Workflow 1

Fig. 7: First workflow for simulation

FastQC

FastQC
Result 1

Genes

FastQC
Result 2

Workflow 2

Fig. 8: Second workflow for simulation

Workflow Provenance for Big Data: From Modelling to Reporting 13

4 Experiments

We implement two different workflows from Bioinformatics described in Figure 7
and 8. The first workflow is about counting DNA letters from a genetic dataset.
We also count the length of the gene. Based on the nucleotide base counts, we
can calculate the Entropy of the gene sequence. We also find out, which base
is having the most and least probability of occurrence over the full sequence
to get an understanding of the full sequence along with it’s entropy. In the
second workflow, we run FastQC [4] over the datasets to generate FastQC results.
Note, in the simulation, a collection of genetic data is used that is described
in Figure 5. The .fastq files are only valid inputs for FastQC and generates
error otherwise. In the simulation, to generate user oriented usage scenario, we
choose a data randomly from the dataset to input through the workflows. Also,
from the first workflow, only DNALetterCount is executed or DNALetterCount
with Entropy is executed or DNALetterCount with Entropy and MaxMinProv
tools are executed. Otherwise, FastQC is executed with random inputs. They
are selected randomly.Between the executions, there is a random gap of 1 to 7
seconds. From the simulation, we create a provenance graph of around 20,000
nodes that contains logs about FastQC errors too. A portion with 300 nodes
from the provenance graph is shown in Figure 6.

Fig. 9: Execution overhead of ProvMod

14 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

Fig. 10: Query overhead of ProvMod

Fig. 11: Comparison of ProvMod execution time with and without provenance

Workflow Provenance for Big Data: From Modelling to Reporting 15

5 Performance Analysis

We analyze several things about our ProvMod model. The analyses are described
below with the found insights:

1. As our model is fused with the Graph Database, querying and adding nodes
is always happening throughout the execution. It can be easily turned off,
but we are eager to see how much performance overhead is occurring for
that. In Figure 9, we can see, when there are around 20,000 nodes in the
simulated provenance graph, the tool execution time is around 2 seconds. In
real world workflows, a workflow may contain around 10 nodes or so, but
never thousands of nodes for a single user. So, our ProvMod model shows
good performance.

2. The query time will also increase as the graph is expanded. We search the
full graph during the simulation at the end of every single simulation step
and capture the time to collect the full graph. We find that the full graph
search is returned withing 1.5 seconds when there are around 20,000 nodes in
the provenance graph in Figure 10. This clarifies that, our ProvMod model
query is not time consuming and fast.

3. Finally, we compare the whole simulation with and without provenance and
measure the performance overhead the ProvMod logging is actually creating
that we present in Figure 11. It becomes clear that, for such a huge graph
with 20,000 nodes the provenance creates an overhead of around 0.5 seconds
in average.

6 Related Works

Significant amount of research works were conducted on Big Data and that is still
going on. Big Data being one of the most demanding technology now, flourished
significantly. Dietrich et al. describes all the phases of Big Data analytics lifecycle
in their book in details [12]. The survey of Chen et al. describes the challenges,
open questions, analytics lifecycle, related important technologies and impact of
Big Data in their work [9]. Online data streaming as well as analysis is a crucial
part in Big Data. Hadoop [22] and Spark [26] are two well known technologies to
achieve such requirement. The practice of Software Engineering is also very im-
portant for building a perfect system, specially when it involves different groups
of developers and experts. Separation of Concerns (SoC) is one of the design
principles of Software Engineering [17]. While designing different services in our
work, we tried to follow this principle.
Scientific workflow systems or workflows have created various research directions.
Each of them focuses on different research problems. A good survey of this topic
and future direction could be found in the work of Barker et al. [6]. Besides, all
workflows are not same and workflows in Big Data analytics require integration
of further data intensive tools and technologies. Liu et al. in their work surveys on
such data intensive workflows [18]. A scientific classification of workflow systems

16 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

is presented by Yu et al. [25]. Kepler [19] and Galaxy [15] are two such examples
of scientific workflows for general purpose to domain specific research works.
Workflow provenance, that is the central topic of our work is a big issue. The
problems, research angles, solutions and implementations vary from domain to
domain. A well classification for all these provenance related topics in workflow
systems is described by Cruz et al. [11]. They demonstrate how provenance in
workflows differs in different aspects. They also take into account a number of
existing workflows and evaluate them with their taxonomy. The importance of
automated provenance in workflows is presented by Barga et al. [5]. How prove-
nance information could be gathered from only manipulating logs is presented
in the work of Ghoshal et al. [13]. Many programming models were emerged for
solving problems in workflow provenance. One such work is the work of Am-
sterdamer et al. [2] that differentiates between data provenance and workflow
provenance very clearly. They also propose a method that leverages the fash-
ion of data provenance for capturing workflow provenance. Another work is the
work of Acer et al. [1] that proposes a graph based workflow provenance model
to describe lineage of dataflow.
Workflow provenance has been separated from the concept of data provenance
itself. Workflow provenance is the provenance of such data that were originated
from workflow systems. Still provenance of workflows are data elements. To
be successful in analyzing provenance of any data, studying the topic of data
provenance becomes necessary. A survey of data provenance in e-science was
done by Simmhan et al. [23]. Buenman et al. [7] characterizes data provenance
with respect to the question of ‘Why’ and ‘Where’. Hartig et al. [14] presents an
approach of data provenance that extends previous approaches and suitable for
data involved in web technologies. Buenman et al. [8] overviews the concept of
provenance in database technologies.
Querying is the final problem of provenance. A set of fundamental provenance
questions may lead to an empirical research in this topic. Anand et al. [3] de-
scribes techniques for efficient querying of workflow provenance graphs. Missier
et al. [20] presents an approach for fine-grained lineage querying that is also
efficient. Analytic provenance is another topic that was emerged from workflow
provenance and involves data visualization, which is also another research do-
main. The importance of data visualization in workflow provenance could be
understood from the work of Ragan et al. [21].

7 Conclusion and Future Works

We try to bring every related component starting from workflow design to end
user reporting into one place. Our proposed approach is for any kind of workflow
system. Bioinformatics is primarily selected for our study and system evaluations
because this research topic covers versatile ranges of scientific domains and also
ranges to Big Data research problem. Our research can lead to a general rec-
ommendation and standard for workflow provenance research. Data provenance
research can be merged with this topic and overall provenance research can flour-

Workflow Provenance for Big Data: From Modelling to Reporting 17

ish. We also plan to find the elementary provenance questions that is applicable
in all domains of Data Science.

References

1. Acar, U., Buneman, P., Cheney, J., Van Den Bussche, J., Kwasnikowska,
N., and Vansummeren, S. A graph model of data and workflow provenance.

2. Amsterdamer, Y., Davidson, S. B., Deutch, D., Milo, T., Stoyanovich,
J., and Tannen, V. Putting lipstick on pig: Enabling database-style workflow
provenance. Proceedings of the VLDB Endowment 5, 4 (2011), 346–357.

3. Anand, M. K., Bowers, S., and Ludäscher, B. Techniques for efficiently
querying scientific workflow provenance graphs. In EDBT (2010), vol. 10, pp. 287–
298.

4. Andrews, S. Babraham bioinformaticsfastqc a quality control tool for high
throughput sequence data, 2015.

5. Barga, R. S., and Digiampietri, L. A. Automatic generation of workflow prove-
nance. In International Provenance and Annotation Workshop (2006), Springer,
pp. 1–9.

6. Barker, A., and Van Hemert, J. Scientific workflow: a survey and research
directions. In International Conference on Parallel Processing and Applied Math-
ematics (2007), Springer, pp. 746–753.

7. Buneman, P., Khanna, S., and Wang-Chiew, T. Why and where: A character-
ization of data provenance. In International conference on database theory (2001),
Springer, pp. 316–330.

8. Buneman, P., and Tan, W.-C. Provenance in databases. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data (2007),
ACM, pp. 1171–1173.

9. Chen, M., Mao, S., and Liu, Y. Big data: A survey. Mobile networks and
applications 19, 2 (2014), 171–209.

10. Christensen, J. H. Using restful web-services and cloud computing to create
next generation mobile applications. In Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages and ap-
plications (2009), ACM, pp. 627–634.

11. da Cruz, S. M. S., Campos, M. L. M., and Mattoso, M. Towards a taxonomy
of provenance in scientific workflow management systems. In Services-I, 2009
World Conference on (2009), IEEE, pp. 259–266.

12. Dietrich, D., Heller, B., and Yang, B. Data science & big data analytics:
discovering, analyzing, visualizing and presenting data, 2015.

13. Ghoshal, D., and Plale, B. Provenance from log files: a bigdata problem. In
Proceedings of the Joint EDBT/ICDT 2013 Workshops (2013), ACM, pp. 290–297.

14. Hartig, O. Provenance information in the web of data. LDOW 538 (2009).

15. Hillman-Jackson, J., Clements, D., Blankenberg, D., Taylor, J.,
Nekrutenko, A., and Team, G. Using galaxy to perform large-scale interac-
tive data analyses. Current protocols in bioinformatics (2012), 10–5.

16. Lakshman, A., and Malik, P. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

17. Laplante, P. A. What every engineer should know about software engineering.
CRC Press, 2007.

18 Rayhan Ferdous, Banani Roy, Chanchal K. Roy, Kevin A. Schneider

18. Liu, J., Pacitti, E., Valduriez, P., and Mattoso, M. A survey of data-
intensive scientific workflow management. Journal of Grid Computing 13, 4 (2015),
457–493.

19. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones,
M., Lee, E. A., Tao, J., and Zhao, Y. Scientific workflow management and
the kepler system. Concurrency and Computation: Practice and Experience 18, 10
(2006), 1039–1065.

20. Missier, P., Paton, N. W., and Belhajjame, K. Fine-grained and efficient
lineage querying of collection-based workflow provenance. In Proceedings of the
13th International Conference on Extending Database Technology (2010), ACM,
pp. 299–310.

21. Ragan, E. D., Endert, A., Sanyal, J., and Chen, J. Characterizing provenance
in visualization and data analysis: an organizational framework of provenance types
and purposes. IEEE transactions on visualization and computer graphics 22, 1
(2016), 31–40.

22. Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The hadoop dis-
tributed file system. In Mass storage systems and technologies (MSST), 2010
IEEE 26th symposium on (2010), Ieee, pp. 1–10.

23. Simmhan, Y. L., Plale, B., and Gannon, D. A survey of data provenance in
e-science. ACM Sigmod Record 34, 3 (2005), 31–36.

24. Webber, J. A programmatic introduction to neo4j. In Proceedings of the 3rd an-
nual conference on Systems, programming, and applications: software for humanity
(2012), ACM, pp. 217–218.

25. Yu, J., and Buyya, R. A taxonomy of scientific workflow systems for grid com-
puting. ACM Sigmod Record 34, 3 (2005), 44–49.

26. Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A.,
Meng, X., Rosen, J., Venkataraman, S., Franklin, M. J., et al. Apache
spark: a unified engine for big data processing. Communications of the ACM 59,
11 (2016), 56–65.

	Workflow Provenance for Big Data:From Modelling to Reporting
	Introduction
	Research Methodology
	Modelling Phase
	Designing Log Structure
	Designing Programming Model
	Featuring Automated Logging
	Facilitating Data Management

	Implementation Phase
	Configuring Logs
	Implementing Analysis Tools
	Layering with DSL
	Designing Pipelines

	Analysis Phase
	Parsing Logs
	Extracting Pipelines
	Querying Provenance
	Reporting or Data Visualization

	Implementation Details
	Experiments
	Performance Analysis
	Related Works
	Conclusion and Future Works

