
Towards Visualizing Large Scale Evolving Clones
1st Debajyoti Mondal

Department of Computer Science
University of Saskatchewan

Saskatoon, Canada
dmondal@cs.usask.ca

2nd Manishankar Mondal
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

mshankar.mondal@usask.ca

3rd Chanchal K. Roy
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

chanchal.roy@usask.ca

4th Kevin Schneider
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

Kevin.Schneider@usask.ca

5th Shisong Wang
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

shisong.wang@usask.ca

6th Yukun Li
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada
moran.li@usask.ca

Abstract—Software systems in this big data era are growing
larger and becoming more intricate. Tracking and managing
code clones in such evolving software systems are challenging
tasks. To understand how clone fragments are evolving, the
programmers often analyze the co-evolution of clone fragments
manually to decide about refactoring, tracking, and bug removal.
Such manual analysis is infeasible for a large number of clones
with clones evolving over hundreds of software revisions. We
propose a visual analytics framework, that leverages big data
visualization techniques to manage code clones in large software
systems. Our framework combines multiple information-linked
zoomable views, where users can explore and analyze clones
through interactive exploration in real time. We discuss several
scenarios where our framework may assist developers in real-life
software development and clone maintenance. Experts’ reviews
reveal many future potentials of our framework.

I. INTRODUCTION

Cloning refers to the task of copying a code fragment from
one place of a codebase and pasting it to some other places
with or without modifications. Such clonings may give rise to
several exactly or nearly similar code fragments, that form a
clone class. A rich body of studies has related code clones
to hidden bug propagation, late propagation, unintentional
inconsistencies, and high instability. Thus software researchers
suggest to manage code clones through refactoring and track-
ing. Clone management requires a deeper understanding of
the software, and thus needs analytic tools that may answer
analytical questions regarding the clones’ properties, locations,
distributions and co-evolution in real time.

Our primary contribution is a visualization framework, that
assists programmers to visualize clone classes or communities,
their distributions over the system, and co-evolution of multi-
ple clone fragments from the same or different clone classes
at a time. The goal is to enable users to intuitively explore the
frequently changed clones in a software, analyze the impact
of a clone change, and understand the clone co-evolutionary
relations for various clone refactoring tasks.

This work is supported in part by Global Water Future (GWF) at University
of Saskatchewan under a CFREF grant.

II. VISUALIZATION FRAMEWORK AND IMPLEMENTATION

Our work is inspired by the following scenarios [3]: S1

(Identifying clone classes for refactoring) - how one can
easily identify clones or clone classes that are important for
refactoring? S2 (Clone tracking) - what are the impacts of
changing one clone fragment on the other related fragments
from the same or different clone classes? S3 (Visualizing co-
evolution) - which changes that were made to a clone fragment
propagated consistently over revisions? S4 (Analyzing clone
distribution) - which parts or modules in a software system
contain most of the clones so that those parts or modules can
be considered for refactoring? S5 (Clone usages) - why the
clones are being created? Do they capture the functionalities
of the system?

1) Related Research: Adar and Kim introduced Soft-
GUESS [1] to visualize clones through several browsers,
where the clones have been explored as graphs or networks.
CYCLONE, proposed by Harder and Göde [5], can visualize
clone evolution in a matrix-like visualization, where each
software version corresponds to a row and the ancestry of
cloned fragments are depicted in columns. Similar visualiza-
tion is available in VisCad [2]. However, none of these systems
provide a visual analytics environment that supports seemless
user interactions to support the clone analysis scenarios [3].

2) Design Details: Our framework is based on the prin-
ciples of composite visualization [6], and the state of the
art approach for visualizing big data [8]. Fig. 1(left) illus-
trates the main interface. The clones in (A) are depicted as
scattered points and positioned using large network visual-
ization techniques such that frequently changing clones form
a few red regions. The user can select the highly changing
clone fragments by surrounding them inside a rectangle by
a mouse dragging operation. The selected clones may come
from various clone classes. The panel (B) depicts them as a
network and creates a force-directed network layout. The panel
(C) shows a heatmap that depicts the pairwise coevolution
frequencies of the selected clone pairs. The files network that



Control
Panel

Clone
Landscape

Network
of Clones

AB
E

Heatmap of
Coevolution
Frequencies

Network
of Files

C D

Panel for examining source codes

F

A parallel-coordinate visualization,
where each axis is a software
revision and each line is a
clone fragment

H1

H4

H2

H5

H3

H6 I

A sorted
list of
selected
fragments

G

Fig. 1. Illustration for the clone visualization framework.

contains the selected clones are shown in (D). The panel (E)
contains parameters where the user can threshold, filter or
recolor various elements as needed for the analysis. In (F), the
user can examine source codes that contain the clone classes.

Fig. 1(right) helps understand the clone evolution details.
The users first select the change-prone clone fragments in (C),
and then press a button control to create the second interface
to get the evolution details. The main panel in this interface
is (G), which is a parallel-coordinate visualization for the
selected clones. The panels H1 − H6 show three networks
of Type 1, 2, and 3 clones, which are well-known clone types
defined based on code similarities. Two clone fragments in
such a network of H1 − H3 are connected, if they changed
together within boundary, i.e., belong to the same clone class.
H4 − H6 show the cross boundary relationships. Finally, (I)
depicts a table that contains a sorted list of the selected clone
fragments based on their change frequencies.

3) Implementation: We used NiCad [4] for detecting code
clones and detected clone genealogies using the SPCP-Miner
tool [7]. The system takes the clone and file networks in a
JSON file format and does not have any data preprocessing
overhead. Given the data in the appropriate JSON format, our
implementation can readily visualize the dataset on its user
interface.

III. FINDINGS AND DIRECTIONS FOR FUTURE RESEARCH

We tested our framework on two open-source subject sys-
tems, Carol and Freecol, with respectively 25K and 91K lines
of code in their last revisions. The evolutionary history of these
systems consists of 1700 and 1950 revisions respectively.

For each system, we analyzed the last revision available
for the systems. We selected a set of highly changing clone
fragments that are alive in the last revision. In each system,
(S1) a natural visual selection allowed us to choose a small
set of clone fragments covering a large percentage of the
clone change events. We often found clone classes that contain
between 10 to 20 clone fragments, contained in a few files,
which are good candidates for refactoring (due to their co-
location). For the selected clones, we analyzed (S2) the within
and cross-boundary relationships among the selected clones.
We noticed that the clones that have high co-change frequency,
favours more within boundary relationships than the cross

boundary relationships. The parallel-coordinate view revealed
insights on how the clones evolve (S3), e.g., in Carol system,
we observed 12 fragments to evolve together in 4 groups.
We often found small groups consisting of two to five clone
fragments that changed closely over many software revisions.
We also analyzed the distribution of the clones in the software
systems (S4). For Freecol, the file network view suggested
high coupling among different modules. Finally, to determine
the clone usages (S5), we examined the source code files
that covered the highly changing clones. This revealed many
common scenarios for using clones, e.g., to encode or decode a
message (url/string), construct objects or threads with different
function signatures, implement conditional logic or exception
handling, initialize variables, handle mouse events, prepare a
string in different formats, implement a chain of function calls,
and so on.

We showed the implemented system to a software de-
velopment specialist from the University, and a professional
software developer. They both found the system to be useful in
getting a quick overview of the clones and understanding their
evolution details. They also suggested to integrate code editing
capabilities, such that one can use this tool for editing and save
the source code, and analyze the effect in real-time. They also
pointed out that code clones may originate from an author
working on several files in a software package. Thus extending
the framework’s capability to relate clones to authors may be
valuable for software maintenance and bug fixing.

In the future, we plan to address the experts’ feedback and
perform controlled user experiments to evaluate the imple-
mented system. We believe that our work will inspire future
research on developing interactive multiple view visualization
for managing code clones.

REFERENCES

[1] Eytan Adar and Miryung Kim. SoftGUESS: Visualization and exploration
of code clones in context. In Proceedings of the 29th International
Conference on Software Engineering (ICSE), pages 762–766. IEEE, 2007.

[2] Muhammad Asaduzzaman, Chanchal K. Roy, and Kevin A. Schneider.
VisCad: flexible code clone analysis support for NiCad. In Proceeding of
the 5th ICSE International Workshop on Software Clones (IWSC), pages
77–78. ACM, 2011.

[3] Hamid Abdul Basit, Muhammad Hammad, and Rainer Koschke. A survey
on goal-oriented visualization of clone data. In Proceedings of the 3rd
IEEE Working Conference on Software Visualization (VISSOFT), pages
46–55. IEEE, 2015.

[4] J. R. Cordy and C. K. Roy. The nicad clone detector. In ICPC Tool
Demo, pages 219 – 220. IEEE, 2011.

[5] Jan Harder and Nils Göde. Efficiently handling clone data: RCF and
Cyclone. In Proceedings of the 5th International Workshop on Software
Clones, pages 81–82. ACM, 2011.

[6] Waqas Javed and Niklas Elmqvist. Exploring the design space of
composite visualization. In Proceedings of the IEEE Pacific Visualization
Symposium (PacificVis), pages 1–8. IEEE, 2012.

[7] M. Mondal, C. K. Roy, and K. A. Schneider. SPCP-Miner: A tool
for mining code clones that are important for refactoring or tracking.
In Proceedings of the 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER’15), pages 482 – 486,
2015.

[8] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the IEEE Symposium on
Visual Languages, pages 336–343. IEEE, 1996.


