
Clone-World: A Visual Analytic System for Large
Scale Software Clones

Abstract—With the era of big data approaching, the number
of software systems, their dependencies, as well as the complexity
of individual system are growing larger and more intricate.
Understanding these evolving software systems is thus a primary
challenge for cost-effective software management and mainte-
nance. In this paper we perform a case study with evolving clones.
We propose an interactive visualization system, Clone-World, that
leverages the big data visualization frameworks to manage code
clones in large software systems. We believe that Clone-World will
not only ease the management and maintenance of clones, but
also inspire future innovation to adapt visual analytics to manage
big software systems.

Visual investigation of how clone fragments are evolving
together or in a group is important for clone refactoring, tracking,
and clone related bug analysis. The programmers often need
to manually analyze the co-evolution of clone fragments to
decide about refactoring, tracking, and bug removal. However,
manual analysis is time consuming, and nearly infeasible for
large number of clones, e.g., with millions of similarity pairs,
where clones are evolving over hundreds of software revisions.
A few clone visualization techniques are already available in
the literature, but they do not scale well with the number
of software versions. In addition, a single visualization is not
sufficient to capture the intangible and complex evolution of the
clones. Our clone analytic system, Clone-World, gives an intuitive
yet powerful solution to these problems. Clone-World combines
multiple information-linked zoomable views, where users can
explore and analyze clones through interactive exploration in real
time. User studies and experts’ reviews suggest that Clone-World
may assist developers in many real-life software development and
maintenance scenarios.

I. INTRODUCTION

Code cloning is a common yet controversial software engi-
neering practice which is often employed by the programmers
during software development and maintenance for repeating
common functionalities. Cloning refers to the task of copying
a code fragment from one place of a code-base and pasting it
to some other places with or without modifications [45]. The
original code fragment (i.e., from which the copies were made)
and pasted code fragments become clones of one another. Two
exactly or nearly similar code fragments form a clone pair. A
group of similar code fragments forms a clone class.

Code clones are of great importance from the perspective of
software maintenance and evolution. A rich body of studies [4],
[6], [11], [15], [16], [20]–[22], [24], [27]–[30], [33], [34],
[36], [37], [53] have already analyzed the impacts of clones
on the evolution and maintenance of software systems. While
some of these studies [4], [15], [16], [20], [24], [27]–[29]
identifed positive impacts of code clones, a number of studies
[6], [11], [21], [22], [30], [33], [34], [36], [37] have shown
empirical evidences of strong negative impacts of code clones
such as hidden bug propagation [30], late propagation [6],
unintentional inconsistencies [6], and high instability [37].

Because of these negative impacts, code clones are considered
among the most threatening aspects in a software system’s
code-base. Software researchers suggest us to manage code
clones through refactoring and tracking.

While making decisions regarding clone management (such
as clone refactoring or tracking) programmers often require
to understand how the refactoring or tracking candidates
evolved together in the past [38], [39]. More importantly,
in order to analyze the origin of clone related bugs and
inconsistencies, programmers need to visually analyze how the
suspected clone fragments changed during the past commits.
Due to the unavailability of appropriate tools or interfaces, the
programmers are to manually check how each of the candidate
clone fragments changed during the past commits. However,
manual analysis of the co-evolution of multiple clone frag-
ments residing in different source code files can be extremely
time consuming. Evolution analysis of a single clone fragment
involves locating each instance of that fragment in each of the
previous revisions and analyzing the differences (i.e., changes)
between the instances of the consecutive revisions. In such a
situation, automatic support for visualizing the co-evolution
of multiple clone fragments at a time can assist programmers
analyze and manage clones in a time efficient way.

We develop a visualization tool, Clone-World, that can
assist programmers to visualize clone classes or communities,
their distributions over file systems, and co-evolution of mul-
tiple clone fragments from the same or different clone classes
at a time. Clone-World supports seamless user interaction and
multiple zoomable views that are information linked. Clone-
World is inspired by the simplicity and usefulness of the
geographic map navigation systems. Clone-World enables
user to see the distribution of frequently changed clones in a
software, analyze the impact of a clone change, understand the
clone co-evolutionary relations for various clone refactoring
tasks, and all these in an intuitive way.

The existing version control systems (such as SVN, GIT,
CVS) help us visualize how a particular source code file
evolved during the past commits. However, none of these
systems can show us evolutionary history considering block
level granularity. Clone-World can help us visualize the
evolution history considering the block level granularity. In
our research, the blocks are the clone fragments detected
by a clone detector. Clone-World can not only show the
evolution of a single clone fragment but also can show how
two or more clone fragments from the same or different
clone classes co-evolved in the past. In other words, Clone-
World can help us visually analyze both within-boundary and
cross-boundary evolutionary coupling among clone fragments.
Such a visualization is important for analyzing and fixing
clone related bugs, and taking clone refactoring and tracking
decisions.



Fig. 1. Snapshots of Clone-World: (left) A clone-landscape, associated with clone and file communities, as well as with a SPCP-heatmap. (right) A clone-evolution
view.

The rest of the paper is organized as follows. Section II
presents some usage scenarios that motivated Clone-World.
Section III, reviews existing big data visualization techniques
and the current state of the art approaches in software and clone
visualization. Sections IV–VII, describes the design of Clone-
World and user experiments. Finally, Section VIII concludes
the paper.

II. USAGE SCENARIOS AND ANALYTICAL TASKS

Assume that a programmer in a software company is
working on a project. He receives a bug-report from the client
about a particular project module. He fixes the bug, uploads the
updated code to the production, and asks the client to check if
the reported bug has got fixed. The client checks the module
and reports that the problem is resolved. However, after a few
days the client again reports the same bug in another module
of the project. The project manager asks the programmer to
investigate why they have got the same bug report even after
fixing it. The programmer investigates and reports that the
second module where the client found the same bug actually
contains a similar piece of buggy code that the first module
had. The manager then realizes that there can be some other
modules in the project with the same bug and all these bugs
should be fixed in the same way. He advises the programmer to
find out all the modules that contain the similar buggy codes
or functionalities, and fix them. After observing many such
occurrences to repeat over time, the manager feels the necessity
of identifying groups of similar code fragments in the project
so that whenever a fragment in a group gets reported to contain
a bug, the other fragments with the same bug can be easily
spotted and fixed. Thus he asks the programmer to identify all
groups (clone classes) of similar code fragments (clones) from
the code-base of the project.

The programmer finds that a number of clone detectors
are available on-line. He downloads one and applies it to the
project’s code-base in order to detect clone classes (i.e., groups
of similar code fragments). He discovers that a huge number
of code clones exist in the code-base. He also realizes that it
would be beneficial if he could merge/refactor the fragments in
a clone class, because in that case changing just one fragment
would sometimes be enough to fix a bug. Existence of multiple
fragments in a clone class can often require us to implement the
same change in each of the fragments in the class individually
and this is time consuming. Merging the fragments of a

class into a single one can save a considerable amount of
development time. However, it is practically impossible to
apply merging/refactoring to all the detected clone classes.
Thus, he needs to identify which clone classes are important
for refactoring.

Finding important clone classes for refactoring from a
huge number of clone classes is challenging. Analysis of
evolutionary history of code clones is essential to mitigate
this challenge. Code clones that mostly remain unchanged
during evolution should be given less priorities compared to the
change-prone ones. However, manually analyzing the evolu-
tionary history of code clones for identifying the change-prone
ones is much time consuming, because it requires retrieval of
multiple instances of all clone fragments residing in multiple
revisions of the project managed by the version control system.
In such a situation, the programmer feels the necessity of a
tool that can help him in analyzing the comparative change-
proneness of the clone classes and fragments for refactoring.

The above scenario already presents us with some major
questions: How can we analyze the clone distribution in a
codebase? What are the uses of these clones? Do they corre-
spond to the same functionalities? Which package contains the
most clones? Which clones are important or relatively easy to
refactor? The clone visualization framework we propose can
help in all the above scenarios and beyond. Our framework
applies a clone detector to all the revisions of a subject system
from its SVN or GitHub repository, detect clone genealogies
from these revisions, analyze their change-proneness, and
finally integrate it into a visual interface for interactive visual
investigation.

Our visualization framework can be used in many real-life
scenarios, and is easy to adapt for the analysis of thousands of
clones as well. For space reasons and a more focused analysis,
we demonstrate only the following five usage scenarios.

S1. Identifying clone classes for refactoring. Clone-
World lets users to easily identify which clones or
clone classes are important for refactoring on the
basis of the changes they experienced in the past.

S2. Clone tracking. While a programmer changes a
particular clone fragment, Clone-World can help
him determine other similar clone fragments from
the same clone class. Clone-World also visualizes
whether that particular clone fragment has coupling

2



with other clone fragments of different clone classes.
Such cross-boundary couplings [38] are important for
determining the impact set while making changes to
a clone fragment.

S3. Visualizing changes that occurred in the past.
When fixing bugs or inconsistencies in the code-
base, programmers might often need to analyze which
changes that were made to a clone fragment in the
past are buggy or inconsistent changes. Clone-World
can help programmers in such a situation by instantly
showing them which changes occurred to a clone
fragment or to a group of clone fragments in the past
commits.

S4. Analyzing clone distribution in a software system.
As cloning is considered harmful, project managers
might want to investigate which parts or modules
in a software system contain most of the clones
so that those parts or modules can be considered
for refactoring. Clone-World can help perform such
investigations. It instantly clusters selected clone frag-
ments in such a way that a user can easily understand
whether they are making communities by residing in
files or directories with close proximity.

S5. Clone usages & structural analysis. This is a
deeper investigation, where the developers may want
to understand the uses of clones in a system. Why the
clones are being created? How to they capture the
functionalities of the system? Clone-World allows
users to explore and get insight on such questions.

III. BACKGROUND AND RELATED WORK

In this section we review existing approaches to visu-
alize softwares, in particular, clones, and common big data
visualization techniques. We begin our discussion by defining
different types of code clones.

A. Different Types of Code Clones
According to the literature [49] Code clones are the exactly

or nearly similar code fragments in the code-base of a software
system. Two code fragments that are similar to each other form
a clone-pair. A group of similar code fragments forms a clone
class or a clone group. Code clones are of four types: Type
1, Type 2, Type 3, and Type 4. Type 1 clones, also knows as
identical clones, are exactly the same code fragments in a code-
base. Type 2 clones are syntactically similar code fragments.
These are mainly created from Type 1 clones because of
renaming variables or changing data types. Type 3 clones can
get created from Type 1 or Type 2 clones because of addition,
deletion, or modification of statements. Type 3 clones are also
known as gapped clones. Finally, code fragments that perform
the same task but were implemented in different ways are
known as Type 4 clones. Type 4 clones are also knows as
semantic clones. Our research in this paper incorporates the
first three clone-types which are are the major clone-types in
the literature.

B. Visualization of Softwares and Clones
A number of metaphor have been explored to visualize

softwares such as city [54]–[56], park-like environment [25], or
solar system [42]. Wettel and Lanza [56] proposed CodeCity, a
3D visualization that models softwares as cities: buildings in a

district represent classes in software packages. The number
of methods for a class, the number of attributes, etc. are
mapped to different visual features of the building (e.g., width,
height and color). CodeCity can process large scale software
systems (e.g., systems with a million LOC). Vincúr et al. [54]
designed ‘VR City’ that adapts city metaphor in an interactive
3D virtual reality environment. Khaloo et al. [25] modeled
software codebase as a park where the user can engage with
the system in an intuitive game-like environment.

Code-map, where the code is visualized in a scaled down
representation of text (using colored pixed lines), is another
popular technique to visualize a big-picture of the codebase.
In a survey Bacher et al. [5] compiled several studies that use
code-map approach. They found that most visualizations are
targeted towards the maintenance activity, and aim to support
multiple actives.

While the use of metaphor is common in visualizing a soft-
ware system, visualization of software clones targets more on
the clone analysis tasks. They have often been explored from a
network visualization perspective, where the nodes correspond
to clones and the links (edges) correspond to the pairwise
relationships (such as similarity or co-evolution) [1], [13]. In
a survey, Basit et al. [7] compiled 50 clone analysis tasks
under 7 categories and examined which existing visualization
technique (among about 22 approaches) could be appropriate
to assist on those tasks.

Adar and Kim introduced SoftGUESS [1] to visualize
clones. SoftGUESS has a ‘genealogy browser’ that arranges
clones from left to right (every column represents a version).
An edge between a pair of node reflects the predecessor and
successor relationship during the evolution of the software.
Another view ‘encapsulation browser’ shows how clones are
distributed in different parts of a system, where the system
itself is shown as a tree structure. Finally, a ‘dependency
browser’ visualizes a network of package, class or method
over different versions, where the edges represent how they
evolved from one version to another version.

CYCLONE, proposed by Harder and Göde [18], can vi-
sualize clone evolution. Each software version in CYCLONE
corresponds to a row, where each clone fragment is represented
by a small circle. Each clone class, i.e., fragments that are
clones of each other, is shown by a rectangle that groups the
corresponding fragments. The ancestry of cloned fragments
has been shown by vertical lines. They used colors to either
illustrate the clone type or to show the type of changes. A
similar visualization support is available in VisCad [3].

Although the existing clone visualization literature is rich,
existing techniques attempts to visualize software revisions
(rather than versions), and cannot visualize large datasets (e.g.,
clone networks with millions of clone pairs, and their evolution
over thousands of revisions). In addition, the complexity of
clone analysis tasks [7] requires different visualization views
to be information linked and integrate seamless interaction. To
overcome such challenge, one needs to adapt the innovation
in big data visualization.

C. Interactive Visualization
The common approach to deal with the big data problem

in visualization is to use various forms of data reduction,
sampling and clustering techniques [2], [31], [32], [43]. Even

3



TABLE I. SUBJECT SYSTEMS

Systems Lang. Domains LLR Revs

Ctags C Code Definition Generator 33,270 774
Carol Java Game 25,091 1700
Freecol Java Game 91,626 1950
jEdit Java Text Editor 1,91,804 4000
JabRef Java Reference Management 45,515 1545
LLR = LOC in the Last Revision Revs = No. of Revisions

after such preprocessing, the size of the refined datasets
remains large enough to challenge real-time user interactions.
This inspired the idea of “overview first, zoom and filter, then
details on demand” [51], and other forms of interactive visu-
alizations. Hierarchical visualization is a very well-alight with
this concept, where the datasets are visualized in several levels.
The top level offer the overview of the datasets with sufficient
hint to the important features that the user would be interested
to explore further. Such visualizations often support zoom and
filtering to so that the details can be reveled for a ‘manageable’
amount of information. An ideal example in this context is the
geographic map, e.g., Google or Bing maps, which has been
adapted to many visual analytic systems [41], [58]. Another
common technique to visualize very high-dimensional data
is by parallel coordinates, where dimensions are represented
by parallel vertical lines, and each datapoint is drawn as a
polyline that connects points on these vertical lines based on its
corresponding values. With appropriate preprocessing parallel
coordinate visualization can be constructed for millions of data
points [19]. We refer interested readers to [9] for a survey on
known approaches to process and visualize big data.

Only a few techniques have recently been proposed that
support real-time spatial queries for large multidimensional
spatio-temporal datasets [12], [32], e.g., twitter data. These
approaches are very effective for computing Heatmaps or his-
tograms, but not suitable for complex visualization. A number
of systems for large network analytics exist, but they come
at an expense of sophisticated algorithms and high system
complexity [17], [44].

IV. SUBJECT SYSTEMS & DATASET PREPARATION

In this section we describe systems that we analyzed using
our clone visualization system, and discuss the process flow
for the overall data preparation for visual analysis of these
systems.

A. Systems Under Test
We conduct our experiment on five open-source subject

systems by downloading those from an on-line SVN repository
called SourceForge.net [?]. Table I contains the details of these
systems. To better explain the behavior of our visualization
system, we choose systems that are diverse in terms of
application domains, implementation languages, and revision
history lengths. Considering each of our subject systems, we
detect clones from all the revisions using the NiCad clone
detector [10]. Then, we detect clone genealogies using the
SPCP-Miner tool [40]. After detecting clone genealogies, we
apply UNIX diff operation to automatically identify how a
clone fragment corresponding to a clone genealogy changed
over the evolution. Genealogies of different clone-types along
with their change information are stored in a database. We will

describe our database in Section IV-C. Clone detection results
from any clone detector arranged in the format described in
Section IV-C can be visualized using our visualization tool.

B. Settings for the Clone Detector
We used NiCad [10] for detecting code clones, which has

recently been reported as a very effective clone detector in a
study conducted by Svajlenko and Roy [52]. We used NiCad
with a configuration that it would detect clones of a minimum
of 10 LOC with 30% dissimilarity threshold, using a blind
renaming of the identifiers. Svajlenko and Roy [52] used these
settings for comparing NiCad with other existing alternatives
and found NiCad to be a very promising tool in terms of both
precision and recall in detecting all three major types of code
clones (Type 1, Type 2, and Type 3).

C. A Comprehensive MySQL Database
SPCP-Miner creates an individual database for each of

our subject systems. Our databases are available on-line []. A
particular database contains the genealogies of three types of
code clones (Type 1, Type 2, and Type 3) from a subject system
in three tables: ‘type1clones’, ‘type2clones’, and ‘type3clones’.

Each of the three tables ‘type1clones’, ‘type2clones’, and
‘type3clones’ contains code clones from each of the revisions
of the subject system. Let us assume that we are now working
on the table ‘type1clones’ in the database called ‘ctags’ (for
subject system Ctags). The very first revision that contains
code is revision 2. The last revision that we analyzed for Ctags
is 774. From each of the revisions, 2 to 774, we detected
Type 1 clones and stored those clones in table ‘type1clones’.
A particular row in this table contains information about a par-
ticular clone fragment in a particular revision. The information
is distributed to the fields. Let us now discuss the fields. The
value of the field called ‘revision’ in a particular row refers
to the revision where the clone fragment denoted by that row
resides. The field called ‘filepath’ contains the path to the file
where the clone fragment remains. The ‘startline’ and ‘endline’
fields contain the starting and ending line numbers of the clone
fragment in the file. The ‘cloneclass’ field contains the clone
class id of the clone fragment. There can be multiple entries
in the table with the same revision number and the same clone
class id. These entries (i.e., these clone fragments) belong to
the same clone class. Two entries with the same clone class id
but with different revision numbers should never be considered
belonging to the same clone class, because they reside in two
different revisions. The field named ‘changecount’ contains
the number of places where the clone fragment denoted by
the row experienced changes before being forwarded to the
next revision. Here are two example queries that we used to
extract information for the clone visualization.

Identifying all clone classes in a particular revision.
Suppose we want to identify all the clone classes in revision 10.
We first need to retrieve all entries from the table (type1clones)
corresponding to revision 10. We then need to group these
entries on the basis of the clone class ids (i.e., ‘cloneclass’
field). Entries with the same clone class id shuold belong to
the same group or the same clone class. We can also retrieve
Type 2 and Type 3 clone classes in any revision from the tables
‘type2clones’ and ‘type3clones’ respectively.

Retrieving clone genealogies. If we look at the fields of
table ‘type1clones’ we can see a field called ‘globalcloneid’.

4



Let us consider the global clone id 10. From the entire table
‘type1clones’, we find all the entries with globalcloneid = 10.
These entries are of different revisions. It is impossible that
two entries with the same global clone id belong to the same
revision. Now if we arrange the entries that we obtained with
global clone id 10 in chronological order (i.e., ascending order)
of revisions, we get the clone genealogy with global clone id =
10. The entries in this genealogy are the snapshots of the same
clone fragment in different revisions. The number of distinct
global clone ids in table ‘type1clones’ is the total number of
Type 1 clone genealogies that were created during the whole
period of evolution of the software system. We can retrieve
Type 2 and Type 3 clone genealogies in a similar way from
the tables, ‘type2clones’ and ‘type3clones’ respectively.

V. VISUAL ANALYTICS OF CLONES

A. System Interface
Clone analytics tasks are complex and diverse, which

requires interface that combines multiple views of the same
data, as well as supports seamless user interaction. For ex-
ample, a high-level visualization that depicts the spread of
clones in a system may not be useful for the detailed analysis
of pairwise changes between clones. Similarly, visualizations
targeting clone refactoring tasks may not be suitable for users
who attempts to understand how the clones are being used
by the developers. To cope with such challenges, Clone-World
includes an interactive system with multiple information-linked
zoomable views for clone analytics. The interactions are syn-
chronized over all views. The users can see multiple visual
instances of the same information in a different context. They
can navigate through various levels of details and can apply
real-time filtering based on their need. Fig. 1 shows a snapshot
of our clone analytics system. In the following we describe the
details of various components of the system.

1) Clone-Landscape View: The clone-landscape view uses
the landscape metaphor to capture the clone distribution across
the system. The dots on the landscape corresponds to the
clones. Each clone is associated with a change count, i.e., the
number of times the clone changed over all the previous revi-
sions. The landscape generated using a surface plot weighted
by the clone change count. The color is generated from a
diverging color scale that changes from blue to red depending
on how frequently the clones in a region are changing. Fig. 2
represents the clone-landscapes of the subject systems.

Design Details: To project the file system structure onto
the landscape, we employ a multidimensional scaling approach
[26]. The distances between a pair of clones is computed based
on a locality metric. clone pairs in the same file are considered
to have one unit of distance between them. Clone clone pairs
with the same parent (resp., grand parent) directory but in
different files are assigned a distant of two (resp.,three) units.
The usefulness of such distance matrices have widely been
studied in the literature for clone locality analysis [23], [50].
The multidimensional scaling attempts to assign coordinates
for the clones such that the locality metric is realized as the
Euclidean metric as much as possible. Since the coordinates
calculated may sometimes put two clone instances very close
to each other, we apply a overlap-removal algorithm [57] to
clear the plot further. Even if the clone density is high, the
users can zoom in and pan to see further details (similar to
map navigation systems).

Once the coordinates are calculated, then a natural ap-
proach to plot a surface is based on weighted point density.
To give the users an idea of the clone set that are most change
prone, we choose clone change count (over all the previous
revisions) as the weight parameter. However, we observed
that only a small fraction of clones changes frequently, while
majority of them don’t change much (see Fig. 3). Therefore,
we computed the 25%, 50%, and 75% quantile of the change
counts, and then assigned each clone a weight based on
its position in the quantile ranges. The surface plot is then
computed using a weighted density estimation.

Interaction: To support the real-life zoom interaction, we
use pre-rendered tiles. We store the tiles in a tree data structure
of depth 5. The top level corresponds to the overall overview
of the landscape, which can already support a few millions of
clones. The system can scale up to a higher number, but with
larger numbers the first overview becomes heavily cluttered.
To tackle this problem we can use a larger depth trees and
maintain a quota per tile. Secondly, we can layout the clones
based on their priorities (change count) respecting the tile
quota, following a technique proposed in [35], [41]. The user
can select a subset of clones by drawing a rectangular range
in the landscape.

2) Clone-Community view: The clone-community view
(Fig. 3) adapts the community concept in networks to capture
how the clones form communities based on different distance
metrics. The user can choose the network nodes in this view
to be clones or clone classes. If the nodes are clones, then the
edges may correspond to whether the corresponding clones
changed together (SPCP score), belong to the same file or
same clone class. If the nodes are clone classes, then an edge
denotes that the corresponding clone classes hit a common file,
i.e., they have clones that reside in a common file. The clone
network is constructed in real time based on the range selected
by the user in the landscape view.

Design Details: A community detection algorithm attempts
to partition a the network nodes into subsets that maximizes the
edge density within each subset and reduces the edge density
across different subsets [14]. We use the Louvain method [8],
a popular community detection approach based on iterative
modularity maximization, where modularity is a function that
measures the quality of the current communities.

Once the communities are formed, we use a force layout
algorithm [] to render them on the canvas. The force layout
algorithm apply charges to the edges so that the nodes repel
each other but also try to achieve the desired edge length
based on minimizing the energy of the layout. We use distinct
symbols to represent different types of clones, i.e., clones of
type 1, 2, 3 are represented using diamond, square, and star
shapes respectively. The view is associated with a mini-map to
give a quick overview of the sizes of different communities.

Interaction: The user can select the dependency (SPCP
score, common file, or common clone class) denoted by the
edges between a pair of clones as they need. We assign each
clone class, file and community, a distinct color. Thus for each
selection for the edge, users can color the nodes either by class,
filepath, or community. This gives raise to 10 combinations in
total, 9 when nodes are clones, and 1 when they are clone
class.

Right clicking a clone brings up a context menu, which

5



Fig. 2. Clone-Landscapes for the subject systems (from left to right) Ctags, Carol, Freecol, jEdit, JabRef.

Ctags Carol Freecol jEdit Jabref

0

20

40

60

C
ha

ng
e

C
ou

nt

Fig. 3. (left) Change Count in Different Systems. (middle) A clone-community view of Clone-World. (right) A SPCP-Heatmap view of Clone-World.

gives the users options to navigate to the source files. The user
may choose to open one file, where the lines corresponding to
the clone are highlighted. They can also open all files (side-
by-side in new tabs) that contain all clones of the same class,
or other clones in the same file, add other clones into the view
that belongs to the same class, and so on. The user can hover
on the nodes to see quick information, and zoom and pan the
view as needed.

3) SPCP-Heatmap view: This is a Heatmap (Fig. 3) that
visualizes the SPCP-scores of the clones selected in the clone-
community view. Although the user has an option to visualize
the clones such that community is formed based on SPCP-
scores, it is not possible for a force layout algorithm to realize
all the desired edge lengths accurately. We thus introduced this
SPCP-heatmap to give further control to the users so that they
can interactively select a set of frequently changing clones.

Design & Interaction: The rows and columns of the
Heatmap correspond to the clones, where they are sorted
by their type from left to right. Each cell in the Heatmap
corresponds to the SPCP-score between a pair of clones,
and its color intensity corresponds to the score. The users
can select/deselect an area of the Heatmap by right clicking
and dragging the mouse. The ids of the selected clones are
accumulated in a panel. The user can click the ’reduce’ button
to remove all the clones from the clone-community view that
have not been selected. The user may see the details of the
selected clones, i.e., their genealogy, the revisions where they
changed together, types of changes, etc., by clicking the ’clone-
evolution view’ (described later). The user can also zoom and
pan the view as needed.

4) File-Community view: This view is similar to the clone-
community view except that the nodes correspond to the files
corresponding to the user-selected clones, and user can connect
a pair of files based on whether they share a common clone
class, or lie in a common parent directory. The files are denoted

by circles of varying sizes, based on the number of clones
it contains. Users can color the nodes by the directory or
community. They can the hover on the nodes to see the filepath,
and zoom and pan the view as needed. In addition, the user
can drag file nodes into the three code-view panels to see the
source codes.

5) Clone-evolution view: The evolution view is activated
from the Heatmap where the user selects a set of fragments and
click the ’clone-evolution button’. The evolution view appears
in a new tab. The clone-evolution view adapts a parallel-
coordinate view to show the change count (Fig. 1(right)).

Design & Interaction: Each x-monotone line in the view
corresponds to a clone chain, and the parallel vertical lines
correspond to the revisions. The height of the chain at each
revision corresponds to the number of changes (additions,
deletions and modifications) the clone experienced from the
previous revision. Since there may sometimes be thousands
of revisions, we equip the evolution view with two range
sliders, one that controls the starting revision, and the other
controls how many revisions (vertical lines) will be visualized
in a single view. However, the clone changes are often sparse,
e.g., there may be many revisions where the clones of interest
have not been changed. We thus add another ’revision reduce’
control to render all revisions except for those that did not
experience any change. In addition, the parallel coordinate
view support brushing and filtering, which is a standard
interaction where user can select a set of clones by drawing
a rectangle on the revision axis for further exploration. We
also maintain a dynamic table that show the selected clone
ids, and their corresponding start and end revision information.
The types of changes, e.g., addition, deletion, other changes,
are shown as a colored square at the intersection point of the
clone chain and the revision axis.

The evolution view also supports a detailed analysis of the
SPCP-scores by partitioning the clone network in a 2×3 grid,

6



where an edge denotes that the corresponding clones changed
together. The columns of the grid correspond to different clone
types. The top row only contains edges connecting the clones
from the same class, whereas the bottom row contains the rest
of the edges, which are known as the cross boundary relations,
i.e., they represent clones that changed together, but belong to
different clone classes. The size of the nodes correspond to
the change count of the clones. It is interesting to observe that
the communities contains nodes of the same classes (color)
and size, whereas the communities of the bottom row contains
nodes of different classes and sizes. The users can navigate
to the source files of a particular clone or clone community
by right clicking the clone node and interacting with the
associated context menu.

6) Further Interface Controls: In addition to the user
controls described above, there are two additional range sliders
in the control panel. One slider is to set an upper bound on the
number of fragments that appear in the clone community view.
The other slider is to set a lower bound on the SPCP-score.
Thus an upper bound of u and a lower bound ` will select all
the pair of clones that have SPCP-score at least `, but chose
at most u clones among them to render. Here the clones are
selected based on their priorities, i.e., change count.

The control panel also includes a search box. The user can
search for a particular clone, all clones of a clone type, or all
clones of a clone class. For example, a search for ‘a : b, x : y :
z’ will add all clones of type a and class b, as well as the clone
z with type x and class id y, in the clone community view.
They search box also supports file search, e.g., searching for
”|apk.java” adds all files with filepath ending with ‘apk.java’
in the file community view.

VI. IMPLEMENTATION OF Clone-World
The back-end (data access and prepossessing) of Clone-

Worldhas been implemented using Java and R programming
language. The front-end has been implemented using D3,
which is a popular JavaScript library for producing dynamic,
interactive data visualizations in web browsers. An indepen-
dent front-end implementation of our system, integrated with
a moderate size dataset, has been hosted here1. This front-end
takes the clone and file networks in a JSON file format, does
not have any data preprocessing overhead. Therefore, given
the network data in the appropriate JSON format, Clone-World
can readily visualize the dataset on its user interface.

VII. CASE STUDIES AND EXPERIMENTS

In this section we first discuss how to interact with Clone-
World for the usage scenarios S1–S5 (as discussed in Sec-
tion II). We the summarize our observations of the case studies,
and list tasks for a subsequent usability analysis.

Case Study S1 (Identifying clone classes for refactor-
ing): The developer selects a set of change-prone clones by
drawing a rectangle that covers a red region in the clone
landscape view (Fig. 4(a)). If many clones are selected, then
he can use the range sliders to focus on a fraction of clones
with high change count. He then interacts with the clone and
file community views to select the desired clone classes.

The suitability of a class for refactoring may depend on
many factors, e.g., refactoring may be easier if the class does

1http:\asdf

not contain many clones, or if the clones belong to only a
few files. The developer can choose the edges to represent
‘common-class’ relation, which groups the clones based on
clone classes. This gives the developer an idea of the size of
the classes. Subsequently, he can choose to color the clone
nodes by the directory colors (Fig. 4(b)). If the clones of a
class are colored by a few colors, then it may be a suitable
candidate for refactoring.

The developer may further refine his choice based on the
SPCP-scores (co-change information) of the clones. He can
select cells with high SPCP-scores, and click on the ’reduce’
button to keep only the selected clones. He can then analyze
them further in the clone-evolution view by clicking on the
’clone-evolution’ button.

Case Study S2 (Clone tracking): The developer first
selects a set of clone pairs with high SPCP-scores in the same
way as in S1, and then uses the clone-evolution view to see
whether these clone fragments have cross boundary couplings
(Fig. 5). These are clones that may be difficult to refactor
(since they belong to different clone classes), but important
for tracking, and thus for handling future clone change or bug
fixes.

The developer can also search for one or more clone or
clone classes in the search box, and visualize these clones
in the clone-evolution view to analyze their cross boundary
relationships.

Case Study S3 (Visualizing changes that occurred in
the past): This scenario is motivated by the bug fixing tasks.
If the bug corresponds to a cloned code, then the developer
searches for the corresponding clone id, uses the context menu
to visualize evolution of the all clone fragments that changed
together with the current clone.

In the clone-evolution view, he selects the ‘reduce revision’
button to get the parallel coordinate view of only the revisions
that experienced clone change (Fig. 6 (top)). Then he uses
the brushing and filtering interactions to further analyze the
co-evolution of the clones.

Case Study S4 (Analyzing clone distribution in a soft-
ware system): Since clones are considered harmful, developer
may want to investigate the files and directories that contains
change-prone clones. In this case, developer first interacts with
the landscape and Heatmap (as in S1), but keep his focus on
the file community view. Once the developer selects a desired
clone set, he can color the file community view by parent-
directory colors. The communities and node sizes give him a
quick idea of the clone density in different directories.

The developer can also explore whether files from different
directories are forming communities. If so, then this is often
an indication of a poor design, i.e., the system may have high
coupling among modules lying in different directories.

Case Study S5 (clone usages & structural analysis):
Clone-World is integrated with the software source files such
that the user can constantly switch between the sources and
analytics interfaces. The developer can right-click on a clone-
fragment node in the community view, and from the context
menu, he can choose to open source files for one or more
clones that are related (i.e., belong to the same class, or change
together). The files are opened in new tabs, where the cloned
codes are highlighted for further investigation.

7

http:\asdf
http:\asdf


Fig. 4. Illustration for the case study S1. (left) Selection on the landscape and the corresponding clone-community view, (middle) further refinement by region
selection on Heatmap (right) refined clone community, and the corresponding file community.

Fig. 5. Illustration for the case study S2. The left three cells correspond to the within boundary relation, and the right three correspond to the cross boundary
relation for different clone types.

Fig. 6. Illustration for the case study S1. (left) Selection on the landscape and the corresponding clone-community view, (middle) further refinement by region
selection on Heatmap (right) refined clone community, and the corresponding file community.

A. Case Study Results
For each system, we analyzed the last revision available

for the systems. Using the work-flow described in Fig. 4, we
selected a set of highly changing clone fragments that are
alive in the last revision. Table II shows how well the selected
clones cover the number of total changes for all clones and co-
changes for all pair of clones. Although the visual selection is
subject to users’ perception, the results show that Clone-World
allowed us to choose for each system, a reasonably small set of
clone fragments that covers most of the clone change events.
We often found clone classes that contain between 10 to 20
clone fragments, but with less than three distinct colors (while
colored by the file colors). This indicates that these clones are
localized in a few files, and thus may be easier for refactoring.
We then further explored their evolution information.

For the selected clones in S1, we analyzed the within and
cross-boundary relationships among the selected clones. We
noticed that with a low SPCP-score threshold, each system de-

TABLE II. COVERAGE OF THE SELECTED CLONE FRAGMENTS

Systems Fragments Selected Changes
Covered

Co-changes
covered

Ctags 35.64% 49.27% 40.05%
Carol 23.07% 17.42% 4.84%
Freecol 39.78% 47.73% 46.60%
jEdit 3.26% 33.09% 10.25%
JabRef 56.42% 16.33% 1.17%

picts a large number of cross boundary relationships compared
to the within boundary relationships. On the other hand, a high
SPCP-score favours more within boundary relationships. For
example, with an increase in the SPCP-score threshold from
1 to 5, the Carol system shows the following (within/cross)
boundary relationship ratios: {0.13, 0.12, 0.16, 0.37, 2}.

The evolution view revealed insights on how the clones
evolve, e.g., in Fig. 6 (bottom), we selected all the clone frag-
ments (among the selected ones in S1) of Carol that changed in

8



software revision 1595. We observed that 12 fragments were
changed and the amount of change for some of them was
similar (as they evolved in 4 groups). These fragments are
perhaps important for refactoring or tracking since some of
them changed several times in subsequent revisions. We found
similar scenarios in all the other subject systems. Furthermore,
there often exist small groups consisting of two to five clone
fragments that changed closely over many software revisions.
Thus Clone-World was helpful to easily select clones that
evolved together and then to navigate to the source code to
see further details, as described later in S5.

For each system, we used Clone-World to select a set
of highly changing clone fragments, and analyzed the large-
size clone classes by investigating the source code files that
covered those clone classes. Here we report a few scenarios
where these clones have been used. For Carol, the analysis
revealed functionalities such as encoding message (url/string)
to a byte buffer, message decoding (which is analogous to
encoding), constructing objects or threads with different func-
tion signatures, implementing conditional logics or exception
handling, etc. For Ctags, the change-prone clone classes consist
of functionalities that involve reading characters from files
under various rules, initializing variables or formatting strings
based on the character read from a file. For Freecol, we
found the uses of clones in handling mouse events, and also
in controlling different game modules. For jEdit, we noticed
several functions with very similar functionalities to be cloned,
where each of them has a different function signature. For
JabRef, clones were used for processing strings, e.g., preparing
a string in many different formats, for exception handling or
implementing a chain of function calls, etc.

B. User Studies
To evaluate the usability of the system, we conduct a user

study. We recruited 16 participants, each had a minimum of 2
years of experience either in industrial software development
or in software engineering research. None of them had prior
experiences in visual analytics of clones.

We first described the participants the visual encodings of
Clone-World, and then asked to perform the following tasks by
interacting with Clone-World. After each task, we asked users
to score in a scale of 0(very-low) to 5(very-high) depending
on how much effort it took to perform those tasks. Finally, we
also asked for qualitative feedback on the system.
Task 1: Find 5 clone classes among a set of highly changing
clones such that each class contains clone pairs with SPCP-
score at least α. How many files correspond to these clone
classes? [scenario: clone refactoring]
Task 2: Search for the clone classes a, b, c, d, and report all
pairs of classes that correspond to cross boundary relation-
ships. [scenario: clone tracking]
Task 3: Find the clone x, and visualize all the clones that
changed with x in previous revisions. Report 5 clones that
changed closely with x. [scenario: clone evolution analysis for
a bug fix]
Task 4: Find a file x, and retrieve all the clones contained
in it. Report the software revisions where these clone codes
were modified. [scenario: the file needs to be deleted due to
copyright issues]
Task 5: Find file communities that show high coupling, i.e.,

many files (nodes) of such a community would be colored in
different colors. [scenario: software maintenance and structur-
ing]

Results: Although Task 1 is highly dependent on the visual
perception of individual participants, the result shows consis-
tency among the participants’ class selection task. Fig. 7(first),
illustrates the top five clone classes that were frequently chosen
by the participants. These 5 classes cover about 40% of the
total participants’ vote. About 70% of our participants reported
that their chosen classes were in at most 5 files. For Task 2, we
measured the accuracy of the participants while reporting the
cross boundary relations (Fig. 7(fourth)). About 53% of our
participant correctly reported the relations and 30% of the rest
correctly identified all but 1 relation (mean = 2.30, s.d. = 0.94).
Task 3 was also subject to individual concept of ‘closeness’
and ’coupling’, however, Clone-World was again able to help
participants’ choose the relevant clone fragments consistently.
As shown in Fig. 7(second), the top five frequently chosen
clone fragments cover about 48% of the total participants’ vote.
Similarly, the top five frequently chosen software revisions
(in Task 4) cover about 38% of the total participants’ vote
(Fig. 7(third)). The outcome for Task 5 (Fig. 7(fourth)), showed
relatively more variability (mean = 8.61, s.d.=5.69), which
perhaps attributes to the difference in individual perception
about coupling.

Fig. 7(fifth) shows the participants’ feedback on the diffi-
culty of completing different tasks and their rating on a five
point Likert Scale. A Friedman test showed that, the difficulty
of task completion differed (χ2

(4,N=13) = 15.08, p < 0.005).
An Wilcoxon Signed-rank test shows that there is a differences
between Tasks 1 and 5 (Z = 2.22, p < 0.05), Tasks 2 and 4
(Z = 2.35, p < 0.05), Tasks 3 and 4 (Z = 2.55, p < 0.05),
and Tasks 3 and 5 (Z = 2.78, p < 0.01).

On a question of how difficult was it to use Clone-World ,
only 1 participant ranked 5 (very difficult), 3 participants raked
this as difficult, and the rest raked 3 or less. Clone-World was
able to make positive impression among the participants. In a
question where the participants were to rank their impression
on Clone-World (1-very positive, 5-very negative), only 1
participant ranked 4, and the rest raked between 1 and 3 (mean
= 2.38, s.d. = 0.86, median 2).

C. Experts’ Review
We interviewed two software developers (Expert A, Expert

B) in the area of code clone visualization. We first explained
our system Clone-World in details, and then the case studies
presented above. They both thought that Clone-World would
be able to assist both software trainees and developers.

Expert A commented that “I was able to do different
tasks such as identifying clone classes for refactoring, how
frequently clone in same or different classes have changed over
many revisions”. She also suggested many thoughtful scope
for extensions. For example, an user may select a region in
the landscape, and subsequently may want to check whether
a particular clone fragment belongs to the selected area by
searching for that fragment in the search box. Similarly, one
can search for a file and may want to see the clone fragments
that it covers in the selected landscape. Since the search box
is currently independent of the selection in the landscape, it
would make sense to combine these two interactions to allow

9



A B C D E

6

7

8

9

10

11
F

re
q

u
en

cy
(%

)

Task 1

A B C D E

8.5

9

9.5

10

10.5

F
re

q
u

en
cy

(%
)

Task 3

A B C D E

7

8

9

F
re

q
u

en
cy

(%
)

Task 4

Task2 Task5

0

5

10

15

R
ep

or
te

d
C

ou
nt

Task1 Task2 Task3 Task4 Task5 Over-all

1

2

3

4

5

P
ar

ti
ci

p
an

ts
’

R
at

in
g

Fig. 7. A summary of the results obtained from the user study.

users to make more complex queries.
She also recommended to augment the Heatmap tool with

more interactive options. For example, the user could apply
reordering of the rows and columns based on the change
count. They may also want to hover on the nodes in the
clone community and expect to see the corresponding cells
highlighted. Currently, the SPCP-Heatmap is used to refine
the selection of the clone and file community views.

Expert B

VIII. DISCUSSION

A. Threats to Validity
Our clone visualization tool, CloneWorld, works on top of

the NiCad clone detector [10]. For different settings of NiCad,
the clone detection results might be different, and thus, our
findings from visual analysis might also be different. However,
the settings that we have used for NiCad are considered
standard [46]. NiCad has been reported to show high precision
and recall with these settings [47], [48]. Moreover, according to
a recent study [52], NiCad is a promising choice for detecting
code clones among many other alternatives. Thus, we believe
that our findings from visual analysis of clone data obtained
by applying by NiCad are important.

Our user study consists of 16 participants. While a higher
number of participants would be good for our study, each
of our participants has an experience of working with code
clones for at least two years. Most of these participants have
expressed a positive impression regarding the applicability
of CloneWorld tool. Thus, according to opinions even from
these 16 participants, our tool can be considered an important
contribution towards managing code clones.

B. Future Work and Conclusion
Write your conclusion here.

REFERENCES
[1] Eytan Adar and Miryung Kim. Softguess: Visualization and exploration

of code clones in context. In 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007,
pages 762–766. IEEE Computer Society, 2007.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. Blinkdb: queries with bounded
errors and bounded response times on very large data. In Zdenek
Hanzálek, Hermann Härtig, Miguel Castro, and M. Frans Kaashoek,
editors, Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech
Republic, April 14-17, 2013, pages 29–42. ACM, 2013.

[3] Muhammad Asaduzzaman, Chanchal K. Roy, and Kevin A. Schneider.
Viscad: flexible code clone analysis support for nicad. In James R.
Cordy, Katsuro Inoue, Stanislaw Jarzabek, and Rainer Koschke, editors,
Proceeding of the 5th ICSE International Workshop on Software Clones,
IWSC 2011, Waikiki, Honolulu, HI, USA, May 23, 2011, pages 77–78.
ACM, 2011.

[4] L. Aversano, L. Cerulo, and M. D. Penta. How clones are maintained:
An empirical study. In CSMR, pages 81 – 90, 2007.

[5] Ivan Bacher, Brian Mac Namee, and John D. Kelleher. The code-
map metaphor - A review of its use within software visualisations. In
Lars Linsen, Alexandru Telea, and José Braz, editors, Proceedings of
the 12th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISIGRAPP 2017) -
Volume 3: IVAPP, Porto, Portugal, February 27 - March 1, 2017., pages
17–28. SciTePress, 2017.

[6] L. Barbour, F. Khomh, and Y. Zou. Late propagation in software clones.
In ICSM, pages 273 – 282, 2011.

[7] Hamid Abdul Basit, Muhammad Hammad, and Rainer Koschke. A
survey on goal-oriented visualization of clone data. In 3rd IEEE
Working Conference on Software Visualization, VISSOFT 2015, Bre-
men, Germany, September 27-28, 2015, pages 46–55. IEEE Computer
Society, 2015.

[8] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 10:P10008, 2008.

[9] Enrico Giacinto Caldarola and Antonio M. Rinaldi. Big data visualiza-
tion tools: A survey - the new paradigms, methodologies and tools for
large data sets visualization. In Jorge Bernardino, Christoph Quix, and
Joaquim Filipe, editors, Proceedings of the 6th International Conference
on Data Science, Technology and Applications, DATA 2017, Madrid,
Spain, July 24-26, 2017., pages 296–305. SciTePress, 2017.

[10] J. R. Cordy and C. K. Roy. The nicad clone detector. In ICPC Tool
Demo, pages 219 – 220, 2011.

[11] N. Göde D. Steidl. Feature-based detection of bugs in clones. In
Proceedings of the 7th International Workshop on Software Clones
(IWSC’13), pages 76 – 82, 2013.

[12] Cicero Augusto de Lara Pahins, Sean A. Stephens, Carlos Scheidegger,
and João Luiz Dihl Comba. Hashedcubes: Simple, low memory, real-
time visual exploration of big data. IEEE TVCG, 23(1):671–680, 2017.

[13] Christopher Forbes, Iman Keivanloo, and Juergen Rilling. Doppel-code:
A clone visualization tool for prioritizing global and local clone impacts.
In Xiaoying Bai, Fevzi Belli, Elisa Bertino, Carl K. Chang, Atilla Elçi,
Cristina Cerschi Seceleanu, Haihua Xie, and Mohammad Zulkernine,
editors, 36th Annual IEEE Computer Software and Applications Confer-
ence, COMPSAC 2012, Izmir, Turkey, July 16-20, 2012, pages 366–367.
IEEE Computer Society, 2012.

[14] Santo Fortunato. Community detection in graphs. Physics Reports,
486:3–5, 2010.

[15] N. Göde and J. Harder. Clone stability. In CSMR, pages 65 – 74, 2011.

[16] N. Göde and Rainer Koschke. Frequency and risks of changes to clones.
In ICSE, pages 311 – 320, 2011.

[17] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee,
Min-Soo Kim, Jinha Kim, and Hwanjo Yu. Turbograph: a fast parallel

10



graph engine handling billion-scale graphs in a single PC. In ACM
SIGKDD (KDD), pages 77–85. ACM, 2013.

[18] Jan Harder and Nils Göde. Efficiently handling clone data: Rcf and
cyclone. In Proceedings of the 5th International Workshop on Software
Clones, pages 81–82. ACM, 2011.

[19] Julian Heinrich and Daniel Weiskopf. Continuous parallel coordinates.
IEEE Trans. Vis. Comput. Graph., 15(6):1531–1538, 2009.

[20] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate code more
frequently modified than non-duplicate code in software evolution?: An
empirical study on open source software. In IWPSE, pages 73 – 82,
2010.

[21] L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related
bugs. In ESEC-FSE, pages 55 – 64, 2007.

[22] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In ICSE, pages 485 – 495, 2009.

[23] C. Kapser and M. Godfrey. Toward a taxonomy of clones in source
code: A case study. In ELISA, pages 67–78, 2003.

[24] C. Kapser and M. W. Godfrey. “cloning considered harmful” considered
harmful: patterns of cloning in software. Empirical Software Engineer-
ing, 13(6): 645 – 692, 2008.

[25] Pooya Khaloo, Mehran Maghoumi, Eugene M. Taranta II, David
Bettner, and Joseph J. LaViola. Code park: A new 3d code visualization
tool. In IEEE Working Conference on Software Visualization, VISSOFT
2017, Shanghai, China, September 18-19, 2017, pages 43–53. IEEE,
2017.

[26] Mirza Klimenta and Ulrik Brandes. Graph drawing by classical multi-
dimensional scaling: New perspectives. In Walter Didimo and Maurizio
Patrignani, editors, Graph Drawing - 20th International Symposium, GD
2012, Redmond, WA, USA, September 19-21, 2012, Revised Selected
Papers, volume 7704 of Lecture Notes in Computer Science, pages 55–
66. Springer, 2013.

[27] J. Krinke. A study of consistent and inconsistent changes to code clones.
In WCRE, pages 170 – 178, 2007.

[28] J. Krinke. Is cloned code more stable than non-cloned code? In SCAM,
pages 57 – 66, 2008.

[29] J. Krinke. Is cloned code older than non-cloned code? In IWSC, pages
28 – 33, 2011.

[30] J. Li and M. D. Ernst. Cbcd: Cloned buggy code detector. In ICSE,
pages 310 – 320, 2012.

[31] Lauro Didier Lins, James T. Klosowski, and Carlos Eduardo Scheideg-
ger. Nanocubes for real-time exploration of spatiotemporal datasets.
IEEE Trans. Vis. Comput. Graph., 19(12):2456–2465, 2013.

[32] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time visual
querying of big data. Comput. Graph. Forum, 32(3):421–430, 2013.

[33] A. Lozano and M. Wermelinger. Assessing the effect of clones on
changeability. In ICSM, pages 227 – 236, 2008.

[34] A. Lozano and M. Wermelinger. Tracking clones’ imprint. In IWSC,
pages 65 – 72, 2010.

[35] Debajyoti Mondal and Lev Nachmanson. A new approach to
graphmaps, a system browsing large graphs as interactive maps. In
Alexandru Telea, Andreas Kerren, and José Braz, editors, Proceedings
of the 13th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISIGRAPP 2018) -
Volume 3: IVAPP, Funchal, Madeira, Portugal, January 27-29, 2018.,
pages 108–119. SciTePress, 2018.

[36] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K. A.
Schneider. Comparative stability of cloned and non-cloned code: An
empirical study. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing (SAC’12), pages 1227 – 1234, 2012.

[37] M. Mondal, C. K. Roy, and K. A. Schneider. An empirical study on
clone stability. ACM SIGAPP Applied Computing Review, 12(3): 20 –
36, 2012.

[38] M. Mondal, C. K. Roy, and K. A. Schneider. Automatic identification
of important clones for refactoring and tracking. In Proceedings of the
IEEE 14th International Working Conference on Source Code Analysis
and Manipulation (SCAM’14), pages 11 – 20, 2014.

[39] M. Mondal, C. K. Roy, and K. A. Schneider. Automatic ranking of
clones for refactoring through mining association rules. In Proceedings
of the IEEE Conference on Software Maintenance, Reengineering

and Reverse Engineering (CSMR-WCRE’14), Software Evolution Week,
pages 114 – 123, 2014.

[40] M. Mondal, C. K. Roy, and K. A. Schneider. SPCP-Miner: A tool for
mining code clones that are important for refactoring or tracking. In
Proceedings of the 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER’15), pages 482 – 486,
2015.

[41] Lev Nachmanson, Roman Prutkin, Bongshin Lee, Nathalie Henry
Riche, Alexander E. Holroyd, and Xiaoji Chen. Graphmaps: Browsing
large graphs as interactive maps. In GD, volume 9411 of LNCS, pages
3–15. Springer, 2015.

[42] Roy Oberhauser. ViSiTR: 3D visualization for code visitation trail
recommendations. International Journal on Advances in Software,
10(1&2):46–56, 2017.

[43] Yongjoo Park, Michael J. Cafarella, and Barzan Mozafari. Visualization-
aware sampling for very large databases. In 32nd IEEE International
Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016, pages 755–766. IEEE Computer Society, 2016.

[44] Yonathan Perez, Rok Sosic, Arijit Banerjee, Rohan Puttagunta, Martin
Raison, Pararth Shah, and Jure Leskovec. Ringo: Interactive graph
analytics on big-memory machines. In ACM SIGMOD, pages 1105–
1110. ACM, 2015.

[45] C. K. Roy. Detection and analysis of near-miss software clones.
In Proceedings of the Doctoral Symposium Track of the 25th IEEE
International Conference on Software Maintenance (ICSM’09), pages
447 – 450, 2009.

[46] C. K. Roy and J. R. Cordy. NICAD: accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In Proceedings of the 16th IEEE International Conference on Program
Comprehension (ICPC’08), pages 172 – 181, 2008.

[47] C. K. Roy and J. R. Cordy. A mutation / injection-based automatic
framework for evaluating code clone detection tools. In Proceedings
of the IEEE International Conference on Software Testing, Verification,
and Validation Workshops (Mutation’09), pages 157 – 166, 2009.

[48] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming Journal, 74 (2009): 470 – 495, 2009.

[49] C. K. Roy, M. F. Zibran, and R. Koschke. The vision of software clone
management: Past, present, and future (keynote paper). In Proceedings
of the IEEE Conference on Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE’14), Software Evolution Week,
pages 18 – 33, 2014.

[50] Chanchal K. Roy and James R. Cordy. Near-miss function clones
in open source software: an empirical study. Journal of Software
Maintenance, 22(3):165–189, 2010.

[51] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the 1996 IEEE Symposium
on Visual Languages, Boulder, Colorado, USA, September 3-6, 1996,
pages 336–343. IEEE Computer Society, 1996.

[52] J. Svajlenko and C. K. Roy. Evaluating modern clone detection tools.
In Proceedings of the 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME’14), pages 321 – 330, 2014.

[53] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta. An
empirical study on the maintenance of source code clones. Empirical
Software Engineering Journal, 15(1): 1 – 34, 2009.

[54] Juraj Vincur, Pavol Návrat, and Ivan Polásek. VR city: Software analysis
in virtual reality environment. In 2017 IEEE International Conference
on Software Quality, Reliability and Security Companion, QRS-C 2017,
Prague, Czech Republic, July 25-29, 2017, pages 509–516. IEEE, 2017.

[55] Richard Wettel. Visual exploration of large-scale evolving software.
In 31st International Conference on Software Engineering, ICSE 2009,
May 16-24, 2009, Vancouver, Canada, Companion Volume, pages 391–
394. IEEE, 2009.

[56] Richard Wettel and Michele Lanza. Codecity: 3d visualization of large-
scale software. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker
Gruhn, editors, 30th International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion Volume,
pages 921–922. ACM, 2008.

[57] Hsiang-Yun Wu, Shigeo Takahashi, Chun-Cheng Lin, and Hsu-Chun
Yen. A zone-based approach for placing annotation labels on metro

11



maps. In Lutz Dickmann, Gerald Volkmann, Rainer Malaka, Susanne
Boll, Antonio Krüger, and Patrick Olivier, editors, Smart Graphics -
11th International Symposium, SG 2011, Bremen, Germany, July 18-
20, 2011. Proceedings, volume 6815 of Lecture Notes in Computer
Science, pages 91–102. Springer, 2011.

[58] Michael Zinsmaier, Ulrik Brandes, Oliver Deussen, and Hendrik Stro-
belt. Interactive level-of-detail rendering of large graphs. IEEE TVCG,
18(12):2486–2495, 2012.

12


	Introduction
	Usage Scenarios and Analytical Tasks
	Background and Related Work
	Different Types of Code Clones
	Visualization of Softwares and Clones
	Interactive Visualization

	Subject Systems & Dataset Preparation
	Systems Under Test
	Settings for the Clone Detector
	A Comprehensive MySQL Database

	Visual Analytics of Clones
	System Interface
	Clone-Landscape View
	Clone-Community view
	SPCP-Heatmap view
	File-Community view
	Clone-evolution view
	Further Interface Controls


	Implementation of Clone-World
	Case Studies and Experiments
	Case Study Results
	User Studies
	Experts' Review

	Discussion
	Threats to Validity
	Future Work and Conclusion

	References

