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Abstract— Nowadays, workflows are being frequently built
and used for systematically processing large datasets in work-
flow management systems (WMS). A workflow (i.e., a pipeline)
is a sequential organization of a finite set of processing modules
that are applied on a particular dataset for producing a desired
output. In a workflow management system, the users generally
create workflows manually for their own investigations. How-
ever, workflows can sometimes be lengthy and the constituent
processing modules might often be computationally expensive.
In this situation, it would be beneficial if a user could reuse
intermediate stage results generated by previously executed
workflows for executing his current workflow.

In this paper, we propose a novel technique based on
association rule mining for suggesting which intermediate stage
results from a workflow that a user is going to execute should be
stored for reusing in future. We call our proposed technique,
RISP (Recommending Intermediate States from Pipelines) in
this paper. According to our investigation on hundreds of work-
flows from two scientific workflow management systems, our
proposed technique can efficiently suggest to store intermediate
state results for reusing in future. The results that we can store
have a high reuse frequency. Moreover, for creating around 51 %
of the entire pipelines, we can reuse results suggested by our
technique. Finally, we can achieve a considerable gain (74 %
gain) in execution time through reusing intermediate results
stored by the suggestions provided by our proposed technique.
We believe that our technique (RISP) has the potential to have
a significant positive impact on Big-Data systems, because it can
considerably reduce execution time of the workflows through
appropriate reuse of intermediate state results, and hence, can
improve the performance of the systems.

Index Terms—Plant phenotyping, Association rules, Work-
flow, Intermediate states suggestion, Pipeline design

I. INTRODUCTION

A scientific workflow management system (SWfMS) is a
special type of WMS (workflow management system) that
lets its users perform computationally expensive and time-
consuming tasks by decomposing them into sequentially
organized and inter-dependent modules. Our research in this
paper deals with workflows (i.e., pipelines) in scientific
workflow management systems. Currently, scientific work-
flow management systems are being commonly used in
various scientific, engineering, and business organizations
for conducting investigations, improving system efficiency,
increasing productivity by reducing costs, and improving
information exchange. In Big-data analytics, when a large
volume of heterogeneous data needs to be processed with
various mechanisms, scientific workflow management sys-
tems (SWIMS) should be considered for efficiency.

In a SWIMS, users can manually build their workflows by
selecting and sequentially adding processing modules from a

finite set of modules available in the SWfMS for performing
their desired investigations. Each workflow or pipeline works
on a particular dataset provided by a user. The processing
modules in a workflow are ordered in such a way that the
output produced by a particular intermediate module can
be used as input by the next module in the workflow. The
output that we obtain from the last module is considered the
final output from the workflow. Users often create workflows
for processing large datasets. The intermediate state results
produced by the modules in such workflows can also be
very large. Moreover, each of the processing modules might
require a considerable amount of time for data processing.
In such a situation, it would be beneficial for a user if he
could reuse results produced by previous workflows that were
executed on the same dataset that he is going to process.

In order to provide automatic support for reusing re-
sults from already executed workflows, we need to have
a mechanism for determining which of the intermediate
state results obtained from a particular workflow have a
high possibility of being reused in future. In our research
presented in this paper, we propose such a mechanism (i.e.,
technique) which we call RISP (Recommending Intermediate
States from Pipelines). Our proposed mechanism provides
suggestions for storing intermediate state results by analyzing
association rules between data and processing modules from
the pipelines in the history. To the best of our knowledge,
our study is the first one to investigate providing suggestions
for storing intermediate state results from pipelines.

Existing studies have stored all the intermediate state
results from pipelines. While such a mechanism (storing
all intermediate state results) is good for provenance, it is
not suitable from the perspective of reusability. For storing
all intermediate state results from all pipelines, we need a
significant amount of storage space. As new pipelines will
be created, the size of the stored results will continuously
increase. Also, it might be seen that many of the stored
intermediate state results are not being reused at all. On
the other hand, if we do not store any of the intermediate
state results, we might need to build and execute the same
workflows again and again. This might have a significant
negative impact on the efficiency when the processing mod-
ules in the workflows are time-consuming. In this situation,
our proposed technique, RISP, can be useful. It suggests
intermediate state results for storing by analyzing their reuse
possibility through mining association rules. The following
example will explain our idea.

Let us assume that a SWfMS without any mechanism for
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Fig. 1. Automatically suggesting intermediate state results for storing from
a workflow under progress.

storing intermediate state results has been used three times
for executing three workflows as shown in Fig. 1. A user is
now going to execute the fourth workflow. In such a situation,
if we integrate RISP with this SWfMS, then it will suggest
for storing the result that will be obtained from module,
M2, of the fourth workflow. The reason behind making this
suggestion is that the dataset D1 that is going to be processed
in the fourth workflow was also processed in the first and
third workflows and the modules M1 and M2 were executed
serially in both of these workflows. Thus, there is a high
possibility that when a user will attempt to create a workflow
in future using dataset D1, he will first apply the two modules
M1 and M2 serially on D1. Moreover, during executing the
fourth workflow, if the result from M2 is stored in the system,
then in future when a user will attempt to create a workflow
using dataset D1, RISP will notify him about the presence of
the result that was stored from the fourth workflow. Section
IIT describes our suggestion making technique.

We implement our proposed technique, RISP, as a proto-
type tool and apply it on hundreds of pipelines created and
used by the researchers and users in two scientific workflow
management systems. We have the following findings:

(1) By analyzing association rules from the previously
executed pipelines, our proposed technique can automatically
suggest which intermediate state results from a pipeline
under progress should be stored for reusing in future.

(2) The intermediate state results that can be stored
according to the suggestions from our proposed technique
have a high frequency of being reused. The 508 pipelines that
we investigated had 7165 possible intermediate state results.
However, our technique suggests storing only 49 of these.
Each of these 49 results can be reused 5 times on an average.
The stored results can be reused for creating and executing
around 51% of the entire set of pipelines.

(4) By storing intermediate state results according to the
suggestions from our proposed recommendation technique
we can have a considerable gain (around 74% gain) in
execution time while executing pipelines.

Our findings indicate that our proposed technique (RISP)
can significantly improve the performance of Big-Data sys-
tems through appropriate reuse of the intermediate state
results from the workflows.

The rest of the paper is organized as follows. Section II
defines and describes association rules, Section III presents
our proposed technique for suggesting intermediate state
results to store for reuse, Section IV describes our experiment
setup, Section V compares our proposed technique with
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Fig. 2. Our proposed technique for suggesting intermediate state results

to store for reusing in future

three other techniques in suggesting intermediate state results
to store, Section VI describes possible threats to validity,
Section VII discusses the related work, and finally, Section
VIII concludes the paper by mentioning future work.

II. BACKGROUND

Association rules have been used in software engineering
research and practice for performing impact analysis tasks.
We define an association rule in the following way.

Association Rule. An association rule [1] is an expression
of the form X => Y where X is the antecedent, and Y is
the consequent. Each of X and Y is a set of one or more
program entities. The meaning of such a rule is that if X
gets changed in a particular commit operation, Y also has
the tendency of being changed in that commit.

Support and Confidence. As defined by Zimmermann et
al. [2], support is the number of commits in which an entity
or a group of entities changed together. The support of an
association rule is determined in the following way.

support(X =>Y) = support(X,Y) (1)

Here, (X,Y) is the union of X and Y, and so
support(X =>Y) = support(Y => X). Confidence of an
association rule, X => Y, determines the probability that Y
will change in a commit operation provided that X changed
in that commit operation. We determine the confidence of
X =>Y in the following way.

confidence(X =>Y) = support(X,Y)/support(X) (2)

In our research, we derive association rules between
datasets and modules from pipelines and investigate those
for providing suggestions regarding which intermediate state
result from a pipeline under progress should be stored.

III. RECOMMENDING INTERMEDIATE STAGE RESULTS TO
STORE FOR REUSING

Let us assume that a user is going to create the n-
th pipeline in a scientific workflow management system
(SWEMS) as shown in Fig. 2. Let us further assume that
during the creation of each of the previous n — 1 pipelines,
our recommendation system (RISP) recommended particular
intermediate state results to store. Thus, we already have
some stored results. The top left rectangle in Fig. 2 denotes
these already stored results. When the user attempts to cre-
ate the n-th pipeline, our recommendation system observes
which dataset she is going to use and determines whether



there are any stored intermediate state results using this
dataset. These results are shown to the user so that she
can decide whether she wants to reuse any of these already
stored results. Let us assume that the user completes her
pipeline with or without using the already stored intermediate
state results. Just after she completes her pipeline (i.e., the
n-th pipeline), our recommendation system determines all
the distinct association rules from all the n pipelines (i.e.,
n—1 previous pipelines and the n-th pipeline that the user is
going to execute), calculates their supports and confidences,
and analyzes these support and confidence values for rec-
ommending which of the intermediate state results from the
newly created pipeline (i.e., n-th pipeline) should be stored.
On the basis of this recommendation, one intermediate state
result from the n-th pipeline might be stored if that was not
stored previously. In this way, when a user attempts to create
a new pipeline in SWEMS, our recommendation technique
performs the following two tasks:

o Recommending a number of already stored intermediate
stage results to the user so that she can reuse it.

e Recommending an intermediate stage result for storing
from the pipeline she created by analyzing association
rules from the pipelines in the history.

A. Determining association rules from pipelines

We derive association rules among datasets and modules
by analyzing existing pipelines in the following way. Let
us consider the first pipeline in Fig. 1. It consists of four
modules (M1, M2, M3, and M4) that sequentially work
on the dataset D1. The results generated from each of
these modules except M4 are intermediate state results. The
result that we obtain from M4 is the final result from
the pipeline. It is possible to store results from each of
these four modules. If we store result from a particular
module, then it might discard the necessity of executing any
previous modules including that particular one whenever a
user needs to execute a similar pipeline in future with the
same dataset. For example, if we store the result obtained
from module M3, then for executing the possible pipeline
D1— >M1— >M2— >M3— >M7) in future, a user does
not need to execute the first three modules. He can just reuse
the previously stored result from module M3 and can only
execute module M7 on the stored result.

We determine association rules from a pipeline on the
basis of how many results can be stored from it. For example,
from the first pipeline in Fig. 1, we determine the following
four association rules: (1) D1=>M1, (2) D1=>[M1, M2],
(3) D1=>[M1, M2, M3], and (4) DI=>[M1, M2, M3,
Md4]. For the first rule, D1 is the antecedent and M1 is
the consequent. For the second rule, the consequent is
the module sequence (M1, M2). An association rule, for
example the second one, means that if a user attempts
to make a pipeline using the dataset D1 in future, then
he has a possibility of applying the modules M1 and M2
sequentially on D1 as the first two modules. From all four
pipelines in Fig. 1, we get ten distinct association rules: (1)
D1=>Ml, (2) D1=>[MI1, M2], (3) D1=>[M1, M2, M3],

(4) D1=>[M1, M2, M3, M4], (5) D2=>M2, (6) D2=>[M2,
MS5], (7) D2=>[M2, M5, M8], (8) D1=>[MI, M2, M6], (9)
D1=>[MI, M2, M7], and (10) D1=>[M1, M2, M7, M8].

B. Determining the supports and confidences of the associ-
ation rules obtained from the pipelines

After determining all the distinct association rules from
all the pipelines, we determine the support and confidence
of each of the rules. For example, we will now determine the
support and confidence of the association rule D1=>MI.

Support of an association rule. Support of an association
is the number of times it can be generated from the pipelines.
The support of the association rule, D1=>M1, is 3 because,
from all the four pipelines in Fig. 1, we can generate this
association rule three times (i.e., from the first, third, and
fourth pipelines). In the same way, the supports of the
association rules, D1=>[M1, M2] and D1=>[M1, M2, M3],
are 3 and 1 respectively. We express the support of an
association rule formally in the following way.

support(D1 => M1) =3 3)

Confidence of an association rule. We determine the
confidence of the association rule D1=>M1 in the following
way from its support value:

confidence(D1 => M1) = support( > )

support(D1)

“4)

Here, support(D1) is the number of times D1 was used
in the pipelines. Thus, support (D1) = 3, because D1 was
used in three pipelines according to Fig. 1. Finally, confi-
dence (D1=>M1) = 3/3 = 1. The highest confidence of an
association rule is 1. Such a confidence for the association
rule D1=>M1 implies that if some one attempts to make
a pipeline in future using the dataset D1, then there is
a high probability that he will choose M1 as the first
module in the pipeline. The confidence of the association
rule D1=>[M1, M2, M3] is 0.33 (confidence(D1=>[MI,
M2, M3]) = support(D1=>[M1, M2, M3])/support(D1) =
1/3). Thus, if a user attempts to build a pipeline in future
using the dataset D1, then there is a little probability (0.33)
that he will use M1, M2, and M3 respectively as the first
three modules in his pipeline.

C. Recommending an intermediate state result for storing

In Fig. 1, we see that the fourth pipeline is the one that
is going to be executed (under progress). For recommend-
ing which intermediate state result should be stored from
this pipeline, we sort the association rules made from this
pipeline on the basis of their confidence values and determine
the highest confidence rules. For example, from the fourth
pipeline in Fig. 1 we get four association rules: D1=>MI,
D1=>[M1, M2], DI=>[M1, M2, M7], and D1=>[M1, M2,
M7, M8] with confidences 1, 1, 0.33, and 0.33 respectively.
The highest confidence rules are D1=>MIl, D1=>[MI,
M2]. We select the longest of these highest confidence rules
for making suggestion because it helps us skip the highest
number of modules. Thus, from the fourth pipeline, we
recommend to store the result obtained from module M2.



IV. EXPERIMENT SETUP

For conducting our experiment, we downloaded 508 work-
flows from Galaxy public server [3] at usegalaxy.org. These
workflows were created and executed on the SWIMS of
Galaxy during the time between February, 2010 and August,
2018. The downloaded workflows were text-based files with
a specific JSON format. We automatically retrieved the mod-
ule execution sequence and dataset details of each workflow
from its corresponding file using our implementation. The
workflows were executed mostly for investigations related
to bioinformatics with biological datasets as the inputs.
We applied our recommendation technique (RISP) on these
workflows to investigate how efficiently it can recommend
intermediate state results for storing so that the results can
be reused in future. Section V-C describes our investigation.

We also integrated our proposed technique with the
SWIMS in the Plant Phenotyping and Imaging Research
Center called P2IRC in USASK. This SWfMS runs on an
OpenStack based Spark-Hadoop cluster having 6 nodes, 40
cores, and 40 GB RAM. It is frequently used for making
pipelines to analyze and investigate large volumes of image
data. The image data is stored in the Hadoop Distributed File
System (HDFS) of the cluster. For investigating how much
gain in execution time can be achieved by storing intermedi-
ate state results according to the suggestions provided by our
proposed technique, we first integrated our technique (RISP)
with the SWfMS, and then executed 32 image processing
pipelines. The input dataset of each of these 32 pipelines
consists of 4000 to 10000 images. The pipelines were created
for different purposes such as image segmentation, image
registration, counting the number of flowers, and image
clustering. The Canola datasets (4KCanola, 10KCanola) of
the P2IRC project of USASK were used as inputs for
the pipelines. The findings of our investigation regarding
execution time gain will be described in Section V-D.

V. EVALUATING OUR PROPOSED TECHNIQUE
A. Candidate techniques for comparison

We compared our proposed technique (RISP) with three
other candidate recommendation techniques by doing inves-
tigation on 508 pipelines that we downloaded from Galaxy
public server [3]. All four recommendation techniques (in-
cluding our proposed one) are listed below.

o PT (Proposed Technique): Our proposed technique rec-
ommends storing intermediate state results indicated by
the association rules with highest confidence.

e TSAR (Technique that recommends Storing All Re-
sults): This second technique recommends storing each
of the intermediate state results of each of the pipelines.

o TSPAR (Technique that recommends Storing Previ-
ously Appeared Results): The third technique recom-
mends storing those intermediate state results that were
produced previously at least once.

o TSFR (Technique that recommends Storing the Final
Result): This technique recommends storing the final
result (output) from a pipeline.

The following paragraphs describe how we evaluate these
techniques for making a comparison among them.

Procedure of investigation using PT (Proposed tech-
nique). For evaluating this technique, we analyze each of
the pipelines in the history serially beginning from the first
one. While examining the n-th pipeline, we analyze our
technique’s recommendation capability in the following way.

First, we apply our technique to determine which in-
termediate state results might have already been stored if
our technique was integrated with the SWfMS from the
very beginning of the history. For this purpose, our system
analyzes association rules from the previous n-1 pipelines. If
we see that any of the intermediate state results of the n-th
pipeline have already been stored previously, then we can
reuse that intermediate state result in this n-th pipeline, and
also, we realize that our system previously took a correct
decision regarding storing those intermediate state results.

After completing the first step, we make association rules
from this n-th pipeline and determine their supports and
confidences by dealing with the association rules from the
previous n — 1 pipelines. We select the highest confidence
rule(s) from the n-th pipeline and assume that we have stored
the intermediate state result denoted by the longest of these
highest confidence rules. In this way, we examine all the
pipelines in the history and determine the number of cases
where we could reuse previously stored intermediate state
results if we could use our proposed technique.

Procedure of investigation using TSAR (Technique that
recommends Storing All Results). By applying this second
technique we analyze the pipelines from the very beginning
one serially. When analyzing the n-th pipeline, we first check
the database to see if any of the stored intermediate state
results can be useful for skipping some processing modules
in the pipeline. If several results are available, then the result
that helps us skip the highest number of processing modules
is used. After executing the pipeline, we store each of its
intermediate state results in the database. If a particular result
is already in the database, we do not need to store it again.

Procedure of investigation using TSPAR (Technique that
recommends Storing Previously Appeared Results). The
third candidate technique is a variant of our proposed
technique. While our proposed technique depends on the
confidence values of the association rules for deciding which
of the intermediate state results should be stored from the
pipeline under progress, the third technique solely depends
on the support values of the association rules. When ana-
lyzing the n-th pipeline, this technique first checks which
of the already stored intermediate state results can be the
most appropriate one for reusing for this pipeline. Then,
it determines the association rules from the pipeline. It
identifies which of the rules have a support of at least one
in the previous usage history (i.e., first n — 1 pipelines). The
intermediate state result indicated by the longest one of these
association rules is considered for storing.

Procedure of investigation using TSFR (Technique that
recommends Storing the Final Result). The fourth tech-



nique stores the final outcome of each of the pipelines. Thus,
if the same pipeline is attempted to be re-executed in future,
then we can just reuse the result from the first execution. We
do not need to again execute any module in the pipeline. We
consider such a technique for comparison because we wanted
to understand how often the same pipelines get executed.

B. Investigated measures

We calculate four measures for our investigation for each
of the candidate systems. The measures and their calculation
mechanisms have been discussed below.

o LR (Likeliness of Reusing from previously stored re-
sults). This measure determines how often we can reuse
intermediate state results that can be stored according
to the suggestions from a candidate system.

o PSRR (Percentage of Stored Results that were Reused).
The second measure determines what percentage of the
intermediate state results that can be stored according
to the suggestions from a candidate recommendation
technique can be reused in future.

e FRSR (Frequency of Reusing Stored Results). This
measure determines how many times a stored interme-
diate state result was reused on an average.

o PISRS (Percentage of Intermediate State Results that
were Stored). This measure calculates what percentage
of the intermediate state results were stored for reusing
according to the suggestions from a candidate recom-
mendation technique.

Calculation mechanism for LR. By sequentially analyz-
ing all the pipelines from the history, we determine two
quantities: (1) the total number of pipelines that we have
analyzed, (2) the number of pipelines for which we could
reuse previously stored intermediate state results. From these
quantities we calculate LR using the following equation.

Number of pipelines for which we

could reuse previously stored results
LR = — x 100 (5)
Total number of pipelines

Calculation mechanism for PSRR. If we see that only a
very small percentage of the previously stored results get
reused (most of the stored results remain unused) during
creating pipelines, then the corresponding recommendation
mechanism should not be considered as an efficient one.
Thus, when comparing the efficiencies of the candidate
recommendation mechanisms, we should also focus on the
second measure (PSRR). It determines what percentage of
the stored results get reused during creating pipelines. By
examining all the pipelines in the history we determine two
quantities: (1) the total number of intermediate state results
that were stored by a candidate mechanism and (2) the
number of intermediate state results that could be reused.
We then calculate PSRR by the following equation.
PSRRZNO' of reused results < 100 ©)

No. of stored results

Calculation mechanism for FRSR. The measure FRSR
(Frequency of Reusing Stored Results) focuses on how many

TABLE I
WORKFLOW INFORMATION FOR THE COMPARISON

Description of calculated measures | PT | TSAR| TSPAR| TSFR

Number of investigated pipelines | 508 | 508 508 508
considering each candidate technique

Number of pipelines for which we | 264 | 314 261 70
could reuse previously stored data

Number of intermediate state results | 49 | 7165 159 457
that were saved according to the sug-

gestion from a candidate technique

PT = Proposed Technique TSAR = Technique that Recommends Storing All
intermediate state Results TSPAR = Technique that Recommends Storing Previously
Appeared Results TSFR = Technique that Recommends Storing the Final Result

I B LR (% of pipelines that could be made by reusing previously stored
intermediate state results)

40 - =
20 =
0 I
PT TSAR TSPAR TSFR

Fig. 3. Comparing the candidate techniques according to the percentage
of pipelines that could be made by reusing previously stored results.

60

times a previously stored result was used during creating
pipelines. If it is observed that the intermediate state results
stored according to the recommendation from a candidate
technique was used rarely during creating pipelines, then the
technique should not be regarded as an efficient one. For
calculating FRSR, we determine two quantities by examining
the entire set of pipelines: (1) the total number of intermedi-
ate state results that were stored from the recommendations
of a candidate technique and (2) the total number of times
the stored results were used for making pipelines. We then
calculate this measure according to the following equation.
FRSR — No. of times stored results were reused 7

No. of stored results

Calculation mechanism for PISRS. The measure PISRS
(Percentage of Intermediate State Results that were Stored)
calculates what percentage of the intermediate state results
that were produced during the execution of the entire set
of pipelines were stored according to the recommendation
of a candidate technique. A candidate technique that stores
comparatively less number of results than other techniques
but ensures higher re-usability should be considered an
efficient one. For measuring PISRS, we examine the whole
set of pipelines and determine the following two quantities
for each recommendation technique: (1) the total number of
possible intermediate states (including the final states), (2)
the total number of intermediate state results that were stored.
We then calculate PISRS using the following equation.

No. of stored results

PISRS = x 100 (8)

No. of intermediate states

C. Comparing the candidate recommendation techniques on
the basis of the measures

The following paragraphs compare the four candidate
techniques (PT, TSAR, TSPAR, and TSFR) on the basis of
the four measures (LR, PSRR, FRSR, and PISRS).
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Fig. 4. Comparing the candidate techniques on the basis of the percentage
of saved data that could be reused from previously stored results

Comparison regarding LR (Likeliness of Reusing from
previously stored results) For each candidate technique,
Fig. 3 shows the percentages of pipelines such that while
building those pipelines we could reuse previously stored
intermediate state results. We can see that for the second
candidate technique (TSAR), the percentage of pipelines
(61.81%) that could be built using previously stored results is
the highest among the four techniques. However, to achieve
this percentage, we need to store all 7165 intermediate state
results from 508 workflows (as indicated in Table I), and
a SWEMS can face a huge storage overhead for storing
such a big amount of results. For our proposed technique
(PT), the likeliness of reusing from stored results is around
51.97%. Although this percentage is smaller compared to
TSAR, we can achieve this by storing only 49 intermediate
state results. We also see that the percentage regarding our
proposed technique is higher than the percentages regarding
the third and fourth candidate techniques. From Table I we
see that the third and fourth techniques suggest storing 159
and 457 intermediate state results respectively. Thus, even by
storing a considerably smaller number of intermediate state
results, our technique ensures a higher likeliness of reusing.

Comparison regarding PSRR (Percentage of Stored Re-
sults that were Reused) Fig. 4 makes a comparison among
the candidate techniques by considering the PSRR measure.
We see that the PSRR value regarding our proposed tech-
nique (PT) is the highest among all the techniques. The
second candidate technique TSAR (that saves all the results)
exhibits the lowest value (2.19%). Thus, only 2.19% of the
intermediate state results stored according to the suggestion
from TSAR can be reused. The remaining 97.81% of the
stored results (i.e., around 7008 of the 7165 stored results)
stay unused. Finally, our proposed technique ensures the
highest reuse of stored results.

Comparison regarding FRSR (Frequency of Reusing
Stored Results). Fig. 5 illustrates how frequently the inter-
mediate state results stored according to the suggestion from
a candidate technique get reused during making pipelines.
From the figure we again realize that our proposed technique
(PT) exhibits the highest reuse frequency (5.39) among all
four techniques. Finally, our comparison in Fig. 5 establishes
our proposed technique to be the best one.

Comparison regarding PISRS (Percentage of Intermedi-
ate State Results that were Stored) Fig. 6 compares the
candidate techniques on the basis of the PISRS measure.
According to our definition of PISRS, the technique with

I ll FRSR (Frequency of reusing previously stored intermediate state results)
6
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Fig. 5. Comparing the candidate techniques on the basis of the frequency
of reusing previously stored intermediate state results
I B PISRS (% of intermediate state results that were saved from total
genearted intermediate states)
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Fig. 6. Comparing the candidate techniques on the basis of the percentage
of intermediate state results that were saved from all intermediate states

the lowest PISRS value should be regarded as the most
efficient one. Fig. 6 shows that our proposed technique
(PT) suggests storing the smallest percentage (0.68%) of all
7165 intermediate state results. According to Table I, this
percentage (0.68%) indicates storing of 49 results only. The
percentage regarding candidate technique TSAR is 100%
because it recommends storing all 7165 results. The PISRS
value for each of the other two techniques is higher compared
to our proposed technique. Thus, even according to this last
measure (PISRS) our proposed technique performs the best.

Investigating how often we can skip processing modules
by reusing previously stored results. We also wanted to
visually investigate how often the intermediate state results
stored by the suggestions from our proposed technique can be
reused to skip some of the processing modules in a pipeline
under progress. For this purpose, we draw the bar graph in
Fig. 7. The bars in the graph indicate how many processing
modules could be skipped for building pipelines by reusing
previously stored results. The graph indicates the followings:

(1) We can often reuse the intermediate state results that
were stored previously according to the suggestions from
our proposed recommendation technique. According to the
figure, we could first reuse previously stored result for
executing the ninth pipeline. From the thirty sixth pipeline,
reusing became more frequent. The graph also implies that
reuse frequency increases with the increase of pipelines. In
general, as more pipelines get created, more intermediate
state results get stored, and eventually, the frequency of
reusing increases as well.

(2) We can often skip a good number of processing
modules by reusing previously stored results. The highest
number of modules that could be skipped is 15.

D. Considering module execution time for evaluating our
proposed recommendation technique

Execution times of the processing modules in a pipeline
should be considered important when making decisions about
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Fig. 7. No. of processing modules that could be skipped by reusing intermediate state results that could be stored according to our proposed technique
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Fig. 8. Calculation of execution time gain

which intermediate state results we should store from a
pipeline. We consider module execution time to evaluate our
proposed technique in the following way.

Let us consider the pipeline in Fig. 8. A recommendation
technique recommends to store the result obtained from
module M2. Let us assume that T1 is the time which is
required to execute M1 and M2 and store results from M2
to HDFS (Hadoop Distributed File System). T2 is the time
to retrieve the result of M2 from HDFS. Now, only if T1 is
greater than T2, then storing the result from M2 is beneficial.
Eq. 9 calculates the execution time gain in this case.

Execution Time Gain =T1 — T2 9)

We consider this timing factor for determining whether
storing an intermediate state result from a pipeline according
to the suggestion from our technique is beneficial.

QOur investigation regarding module execution time. For
conducting this investigation, we executed 32 pipelines in
the scientific workflow management system (SWfMS) of
a plant phenotyping based image research center (P2IRC).
This SWMS runs on a parallel and distributed environment
empowered by a SPARK-Hadoop cluster consisting of 6
nodes, 40 cores and 40GB RAM. While executing the 32
pipelines, we recorded the following three things from each
pipeline: (1) The time that was needed to execute each of
the modules in the pipeline, (2) The time that was needed to
store the output from a particular module in the HDFS. (3)
The time that was needed to retrieve the previously stored
output of a particular module from the HDFS.

We apply our recommendation mechanism on the 32
pipelines that we executed on the SWfMS and determine
which modules could be skipped from which pipelines if
we stored the intermediate state results according to the
suggestions from our recommendation technique. We finally
determine the possible gain in execution time if we could
reuse previously stored results.

Fig. 9 shows the execution time gain (in seconds) cal-
culated using Eq. 9 for each of the 32 pipelines. For the
first few pipelines, we did not have a gain in execution
time because while creating these pipelines there were no
stored results for reusing. However, for the remaining ones,
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Fig. 9. Execution time gain for different pipelines by reusing previously

stored intermediate state results according to our proposed technique

we often got a considerable gain. After executing all 32
pipelines by reusing results stored according to our proposed
technique’s suggestions, we can have a total gain of 17720
seconds (4 hours 55 minutes and 20 seconds).

We also calculated time for executing these 32 pipelines
without reusing stored results and found that 23865 seconds
were required for executing all pipelines. However, if we
reuse the results stored according to the suggestions from
our proposed technique, we can execute all the pipelines in
only 6145 seconds (i.e., we can save 17720 seconds). In other
words, we can save around 74% of total execution time by
reusing results. Thus, our proposed technique can help us
achieve a considerable gain in execution time.

VI. THREATS TO VALIDITY

We analyzed 540 (508 pipelines from Galaxy public server
[3] and 32 pipelines from the SWfMS of P2IRC) pipelines
in our experiment for analyzing our proposed technique’s
efficiency in making suggestions. While a higher number of
pipelines could make our findings more generalized, we see
that our technique exhibits efficient performance on pipelines
from two different workflow management systems. Thus, we
believe that our findings cannot be attributed to a chance.
Our proposed technique can be considered an important
contribution towards managing pipelines.

VII. RELATED WORK

A great many studies [4] [5] [6] [7] [8] [9] [10] [11]
have been conducted on analyzing, reproducing, linking,
visualizing, and managing workflows in a scientific work-
flow management system. We discuss these studies in the
following paragraphs.

Woodman et al. [12] proposed an algorithm for determin-
ing which subset of the intermediate state results from a
pipeline can be stored with the lowest cost. While their study
solely focuses on storage cost, our study is fundamentally
different because we focus on the re-usability of stored
results. We apply association rule mining technique for
identifying which intermediate state results should be stored
so that they can be reused for making pipelines in future.

Yuan et al. [13] proposed an algorithm for determining
which set of intermediate state results can be stored with



the minimum cost. Our study is different because we focus
on the maximum reuse of the stored results. We propose
a technique on the basis of association rule mining for
determining which intermediate state results from workflows
should be stored for reusing in future.

Koop et al. [14] proposed a technique for automatically
completing a pipeline under progress by analyzing pipeline
execution history. While their technique focuses on iden-
tifying which processing modules could be added after an
anchor module in a partially completed pipeline, our study
has a completely different focus. We propose a technique
for identifying which of the intermediate state results from
a pipeline should be stored for reusing.

Many studies [15] [16] [17] have investigated the possi-
bility of discovering and reusing services and workflows in
a SWIMS. Our study is fundamentally different than those
studies because we do not aim to help users in building
pipelines. We identify which of the intermediate state results
from a pipeline under progress should be stored for reuse.

From our above discussion it is clear that none of the ex-
isting studies investigated recommending intermediate state
results from a pipeline for storing so that the stored result
can be reused in future. To the best of our knowledge, our
study is the first attempt towards such a recommendation.
Our in-depth investigation on a good number of workflows
indicates that our proposed technique can efficiently suggest
which intermediate state result from a workflow should be
stored for reusing.

VIII. CONCLUSION

In this paper, we propose and investigate a novel technique
(RISP) for suggesting which intermediate state result from a
pipeline under progress should be considered for storing so
that the result can be reused in future. For making sugges-
tions, our technique mines association rules from the already
executed pipelines in the history and analyzes their support
and confidence measures. We analyze the efficiency of our
technique by applying it on 508 workflows downloaded from
Galaxy public server. According to our investigation, our
proposed technique can efficiently suggest which interme-
diate state result from a pipeline under progress should be
stored for reusing. The 508 workflows that we investigated
had 7165 intermediate state results in total. However, our
recommendation technique suggests storing only 49 of these
results. We find that these 49 results can be reused for
building around 51% of the entire pipelines. Moreover, the
intermediate state results stored according to the suggestions
from our technique exhibit a high reuse frequency.

We also apply our technique on the scientific workflow
management system (SWfMS) in a plant phenotyping based
image research center (P2IRC) for investigating how much
gain in execution time can be achieved by reusing the stored
results. From our investigation on 32 workflows that we
executed on the SWEMS we find that by reusing previously
stored results we can save around 74% of the execution
time that would require if we did not reuse previously
stored results. Findings from our research make us realize

that our proposed recommendation technique (RISP) has
the potential to significantly improve the performance of
Big-Data systems by suggesting appropriate reuse of the
intermediate state results from the scientific workflows.
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