

Modelling Programming Languages for Concurrent and
 Distributed Systems in Specification Languages.

by

 Chanchal Kumar Roy

 Matr Nr.: 244644

Master Thesis

In the area of Computer Science

submitted to the

Faculty of Mathematics, Computer Science and Natural Sciences at the
RWTH Aachen University, Aachen, Germany, December 2004.

Supervised by

Priv.-Doz. Dr. Thomas Noll

 Chair of Computer Science II

First Referee : Priv.-Doz. Dr. Thomas Noll
 Chair of Computer Science II

Second Referee : Prof. Dr. Klaus Indermark
 Chair of Computer Science II

 i

Abstract

In this thesis work, a contribution to the field of Formal Verification is presented
innovating a semantic-based approach for the verification of concurrent and
distributed programs by applying model checking methods. Erlang is a declarative
functional language for programming concurrent and distributed systems on which
this thesis is aimed to employ the model checking methods. In contrast to the
conventional approach of directly applying this verification technique to Erlang
language, this thesis adopts the possibility of exploiting benefits from existing works
by translating an Erlang program to a system model of the specification language π-
calculus for which analysis and verification techniques have already been well
established and there are existing tools for model checking π-calculus systems.

 ii

Dedication

To the departed souls of my parents & father-in-law.

 iii

Acknowledgements

First of all, I would like to express my heart-felt and most sincere gratitude to my
respected supervisor Priv.-Doz. Dr. Thomas Noll for his constant guidance, advice,
encouragement and extraordinary patience during this thesis work. Without him, this
work would have been impossible. He has also unlocked the research potential within
me.

I would like to thank Prof. Dr. Klaus Indermark to be my second referee and for
spending his valuable time during my thesis presentation at Chair of Computer
Science II on 25 November 2004.

I am very much grateful to my HIWI job supervisor Dipl.-Ing. Seoung-Hoon Oh for
his cordial consideration and generous financial support during the whole period of
my master study at Aachen.

I am also grateful to the RWTH Aachen University authority for awarding me merit-
scholarship during my second year study that helped me much to concentrate more
deeply in my thesis work.

I wish to thank my friends and classmates namely, Abu Kauser Jewel, Ismail Siraji,
Mofizur Rahman, Nurjahan Nasrin and George Andonakis for their company and
helping approach.

I express my appreciativeness to my family members and relatives especially, my
mother-in-law Bela Rani Karmaker, youngest brother Ujjal Roy and sister-in-laws
Kalyani Roy & Laboni Roy for their inspiration.

Finally, I am deeply indebted to my wife Banani Roy for more than I could ever
express, due to her love, patience and support during this thesis work.

 iv

Table of Contents

1 Introduction…….………………………………………………………….. -1
 1.1 Model Checking………………………………………………………… -1
 1.2 Motivation………………………………………………………………. -2
 1.3 Related Work…………………………………………………………… -4
 1.4 Overview………………………………………………………………… -5

2 Erlang………………………………………………………………………. -7
 2.1 Introduction……………………………………………………………… -7
 2.2 Modules, Functions and Clauses………………………………………… -8
 2.3 Pattern Matching………………………………………………………… -9
 2.4 Data Objects…………………………………………………………….. -9
 2.5 Case and If……………………………………………………………… -10
 2.6 Concurrency…………………………………………………………….. -10

3 The Asynchronous π-calculus…………………………………………….. -12
 3.1 Introduction……………………………………………………………… -12
 3.2 The Asynchronous π-calculus Syntax………………………………….. -13
 3.3 Free and Bound Occurrences of Names………………………………… -14
 3.4 Structural Congruence and Reaction …………………………………… -14
 3.5 Scope Extrusion…………………………………………………………. -15

4 An Initial Approach to Translation Mapping…………………………… -17
 4.1 Introduction………………………………………………………….……

 4.1.1 Considerations…………………………………………………….…
 4.1.2 General Notations…………………………………………………...
 4.1.3 Translation Functions………………………………………………..
 4.1.4 Global Invariants………………………………………………….…
 4.1.5 PIErlang-00 Syntax ………………………………………………...

-18
-18
-20
-20
-21
-21

 4.2 Data Objects………………………………………….………………….
 4.2.1 Integer ………………….………………………….…………………
 4.2.2 Float…………………….…………………………………………….
 4.2.3 Atom …………………….………………………………………….
 4.2.4 Variables………………….…………………………………………

-21
-21
-24
-25
-26

 4.3 Assignment Expressions…………………………………………………
 4.3.1 Assignment Expression X=E1, E2……………………………………………………..
 4.3.2 Assignment Expression X=E………………………………………..

-27
-27
-28

 v

 4.4 Send Expression: PID as Implicit Mailbox …………………….………. -29
 4.5 Function Call Expressions………………………………………………

 4.5.1 n-ary Function Call………………………………………………….
 4.5.2 n-ary Spawn Call………………………………………………….…

-31
-31
-32

 4.6 Sequence of Expressions ……………………………………………….. -36
 4.7 Receive Expression………………………………………………………

 4.7.1 Matches of Receive Expression………………………………….….
 4.7.2 Match …………………………………………………………….…
 4.7.2(a) Match: Atoms as Patterns………………………………….…
 4.7.2(b) Match: Numbers as Patterns………………………………….
 4.7.2(c) Match: Variables as Patterns………………………………….

-37
-38
-39
-40
-41
-42

 4.8 Case Expression…………………………………………………………
 4.8.1 Case: As a Sequence of Two Expressions ………………………….
 4.8.2 Case: As a Modified Receive Expression …………………………..

-44
-44
-47

 4.9. Receive and Case: Handling Non-determinism among Matches……… -48
 4.10 Function Definition……………………………………………………. -52
 4.11 PIErlang Program………………………………………………………

 4.11.1 PIErlang Program 4.1…………………………………………….
 4.11.1(a) Execution in Erlang Compiler……………………………
 4.11.1(b) Translation in the π-calculus……………………………..
 4.11.1(c) The π-model ……………………………………………..
 4.11.1(d) Observing Behavior in the π-calculus……………………..
 4.11.2 PIErlang Program 4.2……………………………………………..
 4.11.2(a) Execution in Erlang Compiler……………………………
 4.11.2(b) Translation in the π-calculus……………………………..
 4.11.2(c) The π-model ……………………………………………..
 4.11.2(d) Observing Behavior in the π-calculus……………………
 4.11.2(e) An Enriched FSM of Program 4.2……………………….

-53
-54
-54
-55
-57
-57

-58
-59
-59
-62
-62
-63

 4.12 TrPIs at a Glance……………………………………………………….
 4.12.1 Frequently Used TrPIs…………………………………………….
 4.12.2 TrPIs for Handling Non-determinism among Matches…………...

-65
-65
-67

5 Mapping Tuples with Polyadic Communications …………………….… -68
 5.1 PIErlang-01 Syntax……………………………………………………... -69
 5.2 BIF self()………………………………………………………………..

 5.2.1 BIF self():Used As Argument………………………………………
 5.2.2 PIErlang Program 5.1: self() as Argument………………………….

-70
-71
-71

 vi

 5.2.2(a) Execution in PIErlang Compiler……………………………..
 5.2.2(b) Translation in the π-calculus…………………………………
 5.2.2(c) The π-Model………………………………………………….
 5.2.2(d) Observing Behavior in π-calculus …………………………..

-71
-72
-72
-72

 5.2.3 BIF self(): Used As Expression…………………………………….
 5.2.4 PIErlang Program 5.2: self() as Expression…………………………
 5.2.4(a) Execution in PIErlang Compiler……………………………..
 5.2.4(b) Translation in the π-calculus…………………………………
 5.2.4(c) The π-Model………………………………………………….
 5.2.4(d) Observing Behavior in π-calculus …………………………..

-73
-73
-73
-74
-75
-75

 5.3 Tuples as Expression………………………………………………….… -76
 5.4 Tuples in Send Expression: PID as Implicit Mailbox…………………... -76
 5.5 Tuples in Receive Expression: PID as Implicit Mailbox……………..…

 5.5.1 Receive Action in Polyadic π-calculus………………………….…..
 5.5.2 Matches of Receive Expression………………………………….….

-77
-77
-78

 5.5.3 Matches ………………….………………………………………….
 5.5.3(a) Matches: Atoms & Numbers as Elements of Tuple …………
 5.5.3(b) Matches: Variables as Elements of Tuple……………………

-79
-80
-80

 5.5.4 PIErlang Program 5.3: CAR for DC Rule…………………………..
 5.5.4(a) Execution in PIErlang Compiler……………………………..
 5.5.4(b) Translation in the π-calculus…………………………………
 5.5.4(c) The π-Model………………………………………………….
 5.5.4(d) Observing Behavior in π-calculus: CAR for DC Rule……….

-82
-82
-83
-84
-85

 5.5.5 PIErlang Program 5.4: Variables as Tuple Elements ………………
 5.5.5(a) Execution in PIErlang Compiler…………………………….
 5.5.5(b) Translation in the π-calculus…………………………………
 5.5.5(c) The π-Model………………………………………………….
 5.5.5(d) Observing Behavior in π-calculus……………………………

-89
-89
-90
-91
-91

 5.5.6 PIErlang Program 5.5: Inaccuracy of Rule(26A)…………………….
 5.5.6(a) Execution in PIErlang Compiler……………………………..
 5.5.6(b) Translation in the π-calculus…………………………………
 5.5.6(c) The π-Model………………………………………………….
 5.5.6(d) Observing Behavior in π-calculus: Rule (26A) is
 Insufficient. …………………………………………………

-92
-93
-94
-95

-95

 5.5.7 An Approach to Improve Rule (26A)……………………………….
 5.5.7(a) Modification of Rule (26A): Providing BVS………………..
 5.5.7(b) Modification of Rule (26B): Providing BNS…………………

-96
-97
-98

 vii

 5.5.7(c) Betterment of Rule (26C) over Rule(26B)……………..……… -100
 5.5.8 PIErlang Program 5.5: Rule (26C) is Sound but has Extra

 Names in BNS ……………………………………………………….
 5.5.8(a) Execution in PIErlang Compiler………………………………
 5.5.8(b) Translation in the π-calculus…………….…………………….
 5.5.8(c) The π-Model…………………………….…………………..…
 5.5.8(d) Observing Behavior in π-calculus…………………………….

-100
-100
-100
-103
-104

 5.5.9 Improving Rule (26C): Providing BNSRAV …………………….… -108
 5.5.10 PIErlang Program 5.6: Rule (26D) Sounds Perfect….……………...

 5.5.10(a) Execution in PIErlang Compiler…………………………….
 5.5.10(b) Translation in the π-calculus………………………………..
 5.5.10(c) The π-Model……………………………………………..…
 5.5.10(d) Observing Behavior in π-calculus……………………….…

-109
-110
-110
-113
-114

 5.6 Tuples in Case Expressions………………………………………………
 5.6.1 PIErlang Program 5.7: Tuples in Case Expression ………………….
 5.6.1(a) Execution in PIErlang Compiler………………………………
 5.6.1(b) Translation in the π-calculus………………………………….
 5.6.1(c) The π-Model……………………………………………….…
 5.6.1(d) Observing Behavior in π-calculus…………………………....

-119
-119
-119
-120
-121
-122

 5.7 An Approach to Improve Send Rule (25)……………………………..…
 5.7.1 PIErlang Program 5.8: Send rule(25) is Insufficient ………………..
 5.7.1(a) Execution in PIErlang Compiler……………………………...
 5.7.1(b) Translation in the π-calculus………………………………....
 5.7.1(c) The π-Model……………………………………………….…
 5.7.1(d) Observing Behavior in π-calculus………………………..…..
 5.7.2 A Modification to Send Rule (25)……………………………………
 5.7.3. PIErlang Program 5.8: Send Rule(25A) Sounds Correct………….…
 5.7.3(a) Execution in PIErlang Compiler ……………………………..
 5.7.3(b) Translation in the π-calculus………………………………….
 5.7.3(c) The π-Model………………………………………………….
 5.7.3(d) Observing Behavior in π-calculus…………………………...

-123
-124
-124
-125
-126
-126
-127
-127
-127
-128
-128
-128

 5.8 An Approach to Improve Tuple Expression Rule (24)………………..… -130
 5.9 An Alternative Approach for Match Rule (26D)………………………… -130
 5.10 TrPIs at a Glance……………………………………………………..… -131

6 Mapping Nested Tuples, Lists and Arithmetic Expressions……………. -132
 6.1 PIErlang-02 Syntax……………………………………………………… -132

 viii

6.2 Data Types………………………………………………………………
6.3 Arithmetic Expressions………………………………………………….
6.4 Lists………………………………………………………………………
6.5 Nested Tuples……………………………………………………………
6.6 Send Expression ……………………………………………………….
6.7 Matches ………………………………………………………………..
6.8 PIErlang Program 6.1: A Different Approach ………………………….
 6.8(a) Execution in PIErlang Compiler…………………………………….
 6.8(b) Translation in the π-calculus……………………………………….
 6.8(c) The π-Model………………………………………………………..

 6.8(d) Observing Behavior in π-calculus……………… ………………….

-133
-134
-135
-135
-135
-136
-136
-137
-137
-139
-139

7 Mapping Guards…………………………………………………………… -142
 7.1 PIErlang-03 Syntax………………………………………………………

7.2 Guards …………………………………………………………………..
 7.2.1 Guards in Function Definition………………………………………
 7.2.2 Guards in Matches…………………………………………………..
7.3 IF Expression ……………………………………………………………

-142
-142
-143
-144
-144

8 Model Checking with HAL…………………………………………. -145

 8.1 Introduction………………………………………………………………
8.2 HAL compatible π-calculus …………………………………………….
8.3 HAL System Overview…………………………………………………
8.4 HAL Commands…………………………………………………………
8.5 LTS from π-calculus Models……………………………………………
 8.5.1 LTS of Program 5.1…………………………………………………
 8.5.2 LTS of Program 4.2………………………………………………….
 8.5.3 LTS of Program 5.3……………………………………………….….
 8.5.4 LTS of Program 5.4………………………………………………….

-145
-146
-147
-147
-148
-148
-149
-150
-150

9 Conclusion…………………………………………………………………. -152
 9.1 Future Works……………………………………………………………..

9.2 Summary…………………………………………………………………
-152
-154

 References…………………………………………………………………. -155

 ix

List of Figures

 Figure 2.1 The Origins of Erlang……………………………………………… -7
 Figure 3.1 The syntax of the asynchronous π-calculus……………………….. -13

 Figure 3.2 Server S has access to printer P……………………………………. -16
 Figure 3.3 Client C has access to printer P……………………………………. -16
 Figure 4.1 PIErlang-00 syntax ………………………………………………… -22
 Figure 4.2 Graphical representation of rule(2) ……………………………….. -23
 Figure 4.3 Graphical representation of res´<unknown>.nil || res(y).Q ………. -23
 Figure 4.4 Graphical representation of rule(4)………………………………… -25
 Figure 4.5 Graphical representation of TrPIexp(self, X)…………………….… -26
 Figure 4.6 Graphical representation of rule(7).………………………………… -27
 Figure 4.7 Graphical representation of rule(8)……………………………….. -28
 Figure 4.8 Graphical representation of rule(9)……………………………….. -30
 Figure 4.9 Graphical representation of rule(11)………………………………. -33
 Figure 4.10 Graphical representation of rule(12)……………………………… -35
 Figure 4.11 Graphical representation of rule(13)……………………………… -36
 Figure 4.12 Schematic diagram of the sender receiver Program 4.1….………. -55
 Figure 4.13 Graphical representation of Simple FSM Program 4.2………….. -58
 Figure 5.1: PIErlang-01 Syntax……………………………………………….. -70
 Figure 5.2 Schematic diagram of Program 5.3………………………………… -82
 Figure 5.3 Schematic diagram of the echo process of Program 5.4……………. -89
 Figure 5.4 Schematic diagram of the echo process of Program 5.5…………… -93
 Figure 5.5 Communicating schematic diagram of locker Program 5.6……… -110
 Figure 5.6 Schematic diagram of the Program 5.7……………………………. -120
 Figure 5.7 Schematic diagram of Program 5.8………………………………… -124
 Figure 6.1 PIErlang-02 Syntax…………………………………………………. -133
 Figure 7.1 PIErlang-03 Syntax………………………………………………… -143
 Figure 8.1 The π-calculus syntax compatible with HAL……………………… -146

 Figure 8.2 The logical architecture of HAL environment…………………….. -147
 Figure 8.3 LTS of Program 5.1 (a) main process, (b) foo process……………. -148
 Figure 8.4 LTS of Program 4.2 (a) start process, (b) s4 process (c) s1/s2/s3

 process………………………………………………………………

-149

 Figure 8.5 LTS of Program 5.3 (a) main/ping process, (b) pong process……. -150
 Figure 8.6 LTS of Program 5.4 (a) main process, (b) start process (c) loop

 process……………………………………………………………..

-151

Chapter 1. Introduction

 1

Chapter 1

Introduction

This chapter presents an introduction to this thesis. We start with the definition of

model checking following a motivation behind this thesis work. Some related works

are also mentioned along with an overview of the contents of this thesis paper.

1.1. Model Checking

Formal verification means creating a mathematical model of a system, using a

language to specify desired properties of the system in a concise and unambiguous

way, and using a method of proof to verify that the specified properties are satisfied

by the model. When the method of proof is carried out substantially by machine, we

speak of automatic verification. Two well established methods to verification are

theorem proving and model checking.

Model Checking[24], one of many formal verification methods, is an attractive and

increasingly appealing alternative to simulation and testing to validate and verify

systems. Given a system model and desired system properties, the Model Checker
explores the full state space of the system model to check whether the given system

properties are satisfied by the model. The Model Checker either verifies the given

properties or generates counter examples.

While simulation and testing explore some of the possible behaviors of the systems,

model checking conducts an exhaustive exploration of all possible behaviors. Thus,

when the model checker verifies a given system property, it implies that all behaviors

have been explored, and the question of adequate coverage or a missed behavior

become irrelevant[24].

In this approach, the system to be verified is structured as a finite state transition

system describing the behaviors of the system, and the specifications are expressed in

a propositional temporal logic formula. Then, by exhaustively exploring the state

space of the state transition system, it is possible to check automatically if the

specifications are satisfied or to ascertain whether the finite state structure does

actually represent a model for the formula. If the structure is indeed a model for the

formula, then we can say that the system itself satisfies the property captured by the

1.1 Model Checking -1
1.2 Motivation -2
1.3 Related Work -4
1.4 Overview -5

Table of Contents Þ

Chapter 1. Introduction

 2

formula. For specification languages such as Estelle, Lotos or SDL, model checking

has been widely established as a verification technique by constructing Labelled

Transition System(LTS). Once the LTS(s) is built, desirable system properties such as

the absence of deadlocks can then be specified in a suitable logic like LTL or CTL,

and can automatically be checked (at least for finite-state systems). The termination of

model checking is guaranteed by the finiteness of the model.

There are two main advantages of using model checking compared to other formal

verification methods:

(1) It is fully automatic, and

(2) It provides a counter example whenever the system fails to satisfy a given

property.

1.2 Motivation

The main goal of this thesis is to provide a contribution to the field of Formal
Verification by applying model checking methods to the Erlang language.

Erlang [1, 31] is a symbolic, high level and declarative programming language with

support for concurrent and distributed programming. It has been developed at the

Ericsson corporation and is typically used in telecommunication systems. It provides a

functional sublanguage, enriched with constructs for dealing with side effects such as

process creation and inter-process communication. Today many commercially

available products offered by Ericsson are at least partly programmed in Erlang. The

software of such products is typically organized into many, relatively small source

modules, which at runtime execute as a dynamically varying number of processes

operating in parallel and communicating through asynchronous message passing. The

highly concurrent and dynamic nature of such software makes it particularly hard to

debug and test by manual methods. Automatic computer support is indispensable

therefore. To fulfil this requirements, we provide an approach for automatic

verification of Erlang programs by means of embedding model checking methods for

Erlang language.

In contrast to the previous approach(like Estelle, Lotos and SDL above), however,

labelled transition system(s) is not directly constructed for the given Erlang program,

rather, this thesis innovates the idea of exploiting benefit from existing work by first

translating the given Erlang program into a specification language for which analysis

and verification methods have already been developed. Due to the dynamic and

mobile communication structures which arise in many Erlang applications, classical

Chapter 1. Introduction

 3

calculi such as CCS(Calculus of Communicating Systems) is not appropriate for this

purpose. Instead, the p-calculus [34, 35] has been used, which was developed as a

theoretical formalism for describing mobile systems and is best viewed as a formal

framework for providing the underlying semantics of a high-level concurrent and/or

distributed programming language.

The p-calculus is a name-passing calculus that allows the description of concurrent

and distributed systems with dynamically changing interaction topology. Name

communication, together with the possibility of declaring and exporting local names

(scope extrusion), gives this calculus a great expressive power.

As Erlang is a concurrent and distributed programming language, processes in Erlang

software tend to have a complicated communication structure. Erlang processes

achieve concurrency through asynchronous message passing using Process

Identifiers(PIDs) as the links of communication. This can be captured directly with

the name passing feature of the asynchronous p-calculus. Erlang`s message passing

primitives have another promising feature: they can pass PIDs as messages to other

process in communication. The p-calculus achieves this goal with the same idea:

passing channels as messages in communication.

Indirect reference and dynamic creation of new process play a prominent role in

interactions between processes in Erlang. For instance, one process can create a new

child process and can send the PID of the newly created process to a second process

by using asynchronous message passing. In Erlang, links serve as both

communication channel and PID. Such interactions are typically hard to model using

communicating finite state machine. The asynchronous p-calculus provides a simple

way to model such interactions. In p-calculus, links are primitive names of

communication channels. The combination of fresh name generation (new name

creation) and private channel (fresh name) passing(scope extrusion) allows faithful

modelling of several complicated communication patterns between software agents.

The above striking similarities between Erlang and p-calculus lead us to think about

the possibility of performing Erlang verification tasks in p-calculus.

Once the p-calculus model is achieved for a given Erlang program, model checking

methods can be applied with existing tools. One of the promising tools is HAL[9,10],

exploits a novel automata-like model which allows finite state verification of systems

specified in the p-calculus. The HAL system is able to interface with several efficient

toolkits (e.g. model checkers) to determine whether or not certain properties hold for a

Chapter 1. Introduction

 4

given specification. Another well known verification environment for p-calculus

systems is the Mobility Workbench (MWB) [19, 21, 22] which started as a

bisimulation equivalence checker. It contains everything needed for p-process

analysis: p-grammar, parser, abstract representation, executor and bisimulation

checker. The latest released version is MWB'99[21], which features a new faster

model checker as well as decreased space requirements for open bisimilarity

checking.

In [18], the possibility of verifying p-calculus processes via Promela[17, 37]

translation is investigated. A general translation method from p-calculus processes to

Promela models is presented and its usefulness is shown by performing verification

tasks with translated p-calculus examples and SPIN[17, 30]. Model checking

translated p-calculus processes in SPIN is shown to overcome shortcomings of the

Mobility Workbench[19, 21, 22], which implements a theorem-proving style µ-

calculus model checking algorithm for the p-calculus. In [16], a model checker for

mobile systems specified in the style of the p-calculus is presented using tabled

resolution.

As a final argue behind our this thesis work, it is noteworthy to mention that

Microsoft Research has started a project called Behave[15, 12, 13, 14] in order to

build tools for checking behavioral properties (like deadlock freedom, invariant

checking, message understood properties) of asynchronous message-passing programs

and their intention is to do this by directly analyzing source code written in an

asynchronous programming language.

Thereby, in this thesis work, a translation from Erlang language to asynchronous p-

calculus is provided with a view to have a system model in asynchronous p-calculus

for a program written in Erlang. Additionally, it is observed that gained system model

shows the same behavior as it could be expected from its corresponding Erlang

programs.

1.3 Related Works

The attempt to use the p-calculus for verifying Erlang programs should be seen as one

among several similar projects. Similar approaches with different tools and languages

have been used by others.

In [11], a translation of Erlang into Promela and checking Promela by SPIN[17, 30]

was experimented. The main outcome of this experiment was that Promela (and hence

SPIN) is too far away from Erlang to really use them together.

Chapter 1. Introduction

 5

In [7], a translation from Erlang to µCRL is presented. The language µCRL[8] is a

process algebra with data and several verification tools[5, 6] are available for µCRL,

including a tool to create labelled transition systems from µCRL specifications. By

having a translation from Erlang to µCRL, the verification tools for process algebras

and labelled transition systems can be applied to industrial code.

In [29], the Java PathFinder, JPF, a translator from a subset of Java 1.0 to Promela,

the programming language of the SPIN[17, 30] model checker is presented. The

purpose of JPF is to establish a framework for verification and debugging of Java

programs based on model checking. The system is especially suited for analyzing

multi-threaded Java applications, where normal testing usually falls short. The system

can find deadlocks and violations of boolean assertions stated by the programmer in a

special assertion language.

1.4 Overview

In Chapter 1, a motivation behind this thesis along with some related works has been

presented.

In Chapter 2, an introduction to the Erlang language is provided. Apart from briefly

describing how to write simple sequential programs, we focus on the language’s

concurrency and inter-process communication features.

In Chapter 3, a brief presentation of the syntax and semantics of the asynchronous p-

calculus is given.

In Chapter 4, we introduce a restricted subset of Erlang language named PIErlang-00

and for each of the syntactic constructs of PIErlang-00, a corresponding translation

mapping in monadic asynchronous p-calculus is provided. Finally, p-calculus system

models of two complete PIErlang-00 programs have been built based on the

translation mapping rules of the syntactic constructs. Moreover, it has been shown

that gained p-calculus models are showing the same behavior as it could be expected

from its corresponding PIErlang-00 programs.

In Chapter 5, PIErlang-00 is enriched with tuples and a BIF self(). We call this version

PIErlang-01. A detailed step by step translation for tuple-based communication in the

form of the polyadic asynchronous p-calculus with several examples has been

presented. Additionally, the behaviors of the p-models has been observed and found

that they are showing exactly the same behaviors as its corresponding Erlang

programs although in some cases there is likely a possibility of having a deadlock.

Chapter 1. Introduction

 6

Besides this, a modification to the semantics of p-calculus has been proposed to keep

the translation procedure easier.

In Chapter 6, PIErlang-02 is formed from PIErlang-01 by supporting nested tuples,

lists and arithmetic expressions. As usual, a translation mapping for PIErlang-02 has

been provided. Additionally, one PIErlang-02 program has been used to get

corresponding system model in p-calculus by applying translation mapping rules.

Furthermore, it has been shown that gained p-calculus model shows the same

behavior as it could be expected from its corresponding PIErlang-02 program.

In Chapter 7, Guards, one of the interesting and promising feature of Erlang language,

are added to PIErlang-02, PIErlang-02 renamed as PIErlang-03 and translation

mapping supporting guards are presented.

In Chapter 8, the verification tool HAL is introduced with a view to provide an idea of

how to verify the gained p-models in HAL.

In Chapter 9, a summary of the works that we have done is given and some hints for

future works are made.

Chapter 2. Erlang

 7

Chapter 2

Erlang

This chapter introduces Erlang. The treatment of the language is not intended to be
complete. For fuller treatment the reader is referred to [1]. Developments to Erlang
since [1] can be found in the OTP documentation [31]. A more formal treatment of
Erlang can be found in the Erlang reference manual[32] and in the core Erlang
specification [26]. To concentrate on the real-time aspects of the language, the reader
is referred to [27]. The text of this chapter has been taken from [25].

2.1 Introduction

Erlang is a Programming language which is designed for programming concurrent,
real-time, distributed fault-tolerant systems. The Erlang programming language has
been developed at Ericsson and Ellemtel Computer Science Laboratories.

Table of Contents Þ

2.1 Introduction -7
2.2 Modules, Functions and Clauses -8
2.3 Pattern Matching -9
2.4 Data Objects -9
2.5 Case and If -10
2.6 Concurrency -10

ERLANG

Assembly level
languages

High level languages
Fortran, Pascal, C…

Declarative languages
Lisp, Prolog, ML…

Realtime Languages
Ada, Chill, Modula…

Figure 2.1 The Origins of Erlang

Chapter 2. Erlang

 8

Development started in the early eighties with experiments of programming telecom
using different languages. The experiments showed that no existing language had all
of the following features:

• high level declarative language
• primitives for concurrency and error recovery
• concurrency

Therefore, a new language with these features was developed, Erlang. In the
beginning of the nineties the first implementation of Erlang was released to users.
Today Erlang is available for most operating systems and platforms and is developed,
maintained and marketed by Erlang Systems Division.

Erlang is a functional concurrent language designed for implementing reliable real-
time systems. It is a small but powerful language which a person with some
knowledge of programming can learn in a few days time.

2.2 Modules, Functions and Clauses

An Erlang program is divided into modules. A module consists of one or several
functions which in turn consists of clauses. The functions in a module are hidden from
outside the module except for the exported functions which can be called from
outside.

-module(mathlib).
-export(factorial/1).

factorial(0) ->1;
factorial(N) -> N * factorial(N-1).

Program 2.1 A simple factorial program

The module mathlib above consists of one function, factorial/1, which means the
function has an arity (number of arguments) of 1. Factorial consists of two clauses
separated by a semicolon and ended by a full stop. The function factorial is exported
and can be called from outside the module. Functions that are not exported are local
and can only be called from inside the module An external call to factorial/1 has the
following syntax:

mathlib: factorial(3).

This call would result in the answer 6.

Chapter 2. Erlang

 9

It is also possible to import functions so that they can be used as if they were local
functions. This is done by using import.

Erlang also supports last call optimization. This allows functions to be evaluated in
constant space i.e. the stack does not grow for each recursive call.

2.3 Pattern Matching

When a function is called one of its clauses is chosen. Erlang chooses its clauses by
pattern matching which is a fundamental concept which contributes in making Erlang
programs short and succinct. This means that the first clause which matches the
pattern will be chosen. In the example call above(Program 2.1) factorial(0) will only
be matched when the argument is 0, otherwise the second clause will be chosen.
When a match occurs the expression on the right hand side of the “->” will be
evaluated. Pattern matching is also used for assigning variables. Variables in Erlang
are only assigned once and cannot change value in the same scope. They are also
untyped and are bound to a type when they are bound to a value. In the factorial
example(Program 2.1) N is first bound to 3 and then factorial is called again with its
N bound to 2 and so on… This means that a scope of a variable is from it was bound
to the end of the clause it was bound in.

> X={4711, foobar}.
 {4711, foobar}
> {A, B}=X
 {4711, foobar}
> A.
 4711
> B.
 foobar

2.4 Data Objects

An object in Erlang is either a constant, compound term or a variable. A constant can
be an atom, float, process identifier(PID) or an integer while a compound term is
either a list or a tuple. A list is a construct of pairs in the form [H | T] or it is an empty
list[], Thus [a, b, c] is short for [a | [b | [c | []]]]. Strings are also lists; “abc” is short
for [97, 98, 99]. The tuple {a, b, c} is a tuple of size 3 with atoms as elements. Lists
are used when the number of elements change dynamically while tuples are used
when the number of elements are static. Variables begin with an upper case letter and
“_” denotes anonymous variable. Some examples of atoms, lists, and tuples are given
below:

Chapter 2. Erlang

 10

atoms: foo, ‘hey you’ , hello_world

lists: [a, b, c] , [42, foo], []

tuples: {a, b, c}, {1, foobar}, {}

2.5 Case and If

The case and if expressions are used for choice between alternatives within the body
of a clause.

case Expr of
 Pat1 [when Guard1] -> Seq1;
 Pat2 [when Guard2] -> Seq2;

 …

 PatN [when GuardN] -> SeqN
 end

if
 Guard1 -> Seq1 ;
 Guard2 -> Seq2;

 …

end

In the case expression, the Expr is first evaluated and then the pattern which fits
the evaluation is chosen and the corresponding sequence is run. When is a guard test
which also can be used in the head of a function.

The if expression, on the other hand, has its guards sequentially evaluated and the first
guard that succeeds has its sequence evaluated.

In both if and case, it is an error if no pattern matches. Therefore a “catch all” clause
should be added.

2.6 Concurrency

Erlang has a number of multi-process primitives. Spawn/3 is a primitive which
spawns a new concurrent process. Spawn/3 has the following syntax:

ProcessID =spawn(Module, Function, [Arg1, Arg2, …,])

spawn returns the process identifier(PID) of the new process to variable ProcessID.
Processes communicate with each other by sending messages. This is done by the
send primitive “!”.

Chapter 2. Erlang

 11

ProcessID ! Message
Messages which can be any Erlang term sent by a process are received by the
primitive receive. A receive expression will suspend the process until a message that
will match any of the patterns has arrived. The messages in a process mailbox are
matched in FIFO order. If a message does not match it is left in the mailbox until a
match for that message is found and the next message is checked.

receive
 Message1 [when Guard1] -> Action1;
 …

 MessageN [when GuardN] -> ActionN

[after
 Time -> ActionTimeOut]
end

Time is an optional time out expression which timeouts after Time milliseconds.

-module(talk).
-export([start/0, say_hello/1]).

start() ->
 ProcessID = spawn(talk, say_hello, [self()]),
 ProcessID ! {self(), hello},
 say_hello(ProcessID).

say_hello(ProcessID) ->
 receive
 { ProcessID, hello} ->
 ProcessID ! {self(), hello}
 end,
 say_hello(ProcessID).

Program 2.2 A simple echo process.

A process which runs the module talk will spawn a process at which it will send and
receive messages from. After the child process is spawned, the parent process will
send a message containing its PID and the atom hello to its child. The child process
receives the message and sends an answer at which the parent receives and answers
and so on… self() is a BIF(Built In Function) which returns the processes own PIDs.

Chapter 3. The Asynchronous π-calculus

 12

Chapter 3

The Asynchronous π-calculus

In this chapter, a short introduction to the asynchronous π-calculus is given. The
asynchronous π-calculus is a variant of the π-calculus[3, 34, 35, 36] based on the idea
that the messages are elementary processes that can be sent without any sequencing
constraint. This chapter only focuses on the syntax and structural congruence and
reaction relation of the calculus. A detailed study on asynchronous π-calculus can be
found in [4, 33].

3.1 Introduction

The π-calculus is a process algebra specially suited for the description and analysis of
concurrent systems with dynamic or evolving topology. Systems are specified in the
π-calculus as collection of processes or agents which interact by means of links or
names. The calculus allows direct expression of mobility, which is achieved by
passing link names as arguments or objects of messages. When an agent receives a
name, it can use this name as a subject for future transmissions, which allows an
effective reconfiguration of the system. In fact, the calculus does not distinguish
between names and data. This homogeneous treatment of names is used to construct a
very simple but powerful calculus.

The π-calculus is available in two basic styles: the monadic π-calculus, where exactly
one name is communicated at each synchronization, and the polyadic π-calculus,
where zero or more names are communicated. We will use both monadic and polyadic
asynchronous π-calculus together as mentioned in Figure 3.1. below. The basic
concept behind the π-calculus is naming or reference. Names are the primary entities
and they may refer to links or channel or any other kind of basic entity. Processes,
sometimes referred as agents, are the other kind of entities. We let the letters X1,..,Xn,
x, y, y1,…,yn range over the names. We also let ! , ! 1, ! 2 range over agents or
process expressions.

3.1 Introduction -12
3.2 The Asynchronous π-calculus Syntax -13
3.3 Free and Bound Occurrences of Names -14
3.4 Structural Congruence and Reaction -14
3.5 Scope Extrusion -15

Table of Contents ⇒

Chapter 3. The Asynchronous π-calculus

 13

System: S ::= Q+
Process Definition: Q::=A(x1, ..,xn)= π (where i! j =>xi! xj) ; n>=0

Process: π::=nil Nil
 | ! .! Prefix

 | x´<y1,..,yn>.nil Asynchronous Output ; n>=0
 | ! 1|| ! 2 Parallel
 | ! 1 + ! 2 Sum

 | (new x) ! Restriction
 | [x=y] ! Match

 | [x!=y]! Mismatch
 | A(x1,..,xn) Identifier/Process Instantiation n>=0

Action Prefixes: ! ::=x(y1,...,yn) Input
 | ! Silent

Figure 3.1 The syntax of the asynchronous π-calculus.

3.2 The Asynchronous π-calculus Syntax

In Figure 3.1, it is seen that a system in the π-calculus is a composition of one or more
process definition(s), where process definition is of the form A(X1,..,Xn)=! and
processes(agents) could have the following forms:

(1) nil is an inactive or deadlock process; it is a process that can do nothing.

(2) The prefix ! .! has a single capability, expressed by ! ; the process ! cannot
proceed until that capability has been exercised. The prefixes could be in two
possible forms x(y).! or ! .! . “x(y)” is a positive prefix, where x is the input
port of an agent; it binds the variable y. At port x the arbitrary name z is input by
x(y).! , which behaves like ! [y/z], where ! [y/z] is the result of substituting z
for all free (unbound) occurrences of y in ! . Similarly, arbitrary names z1,..,zn
are input by x(y1,...,yn).π at port x and behaves like π[y1/z1,..,yn/zn]. ! is the silent
action; ! .! first performs the silent action and then acts like ! .

(3) x´<y>.nil is an asynchronous output process. “x´<y>” is a negative prefix; x´ can
be thought of an output port of an agent which contains it. x´<y>.nil outputs y on
port x then behaves like nil that can do nothing. We are using asynchronous ! -
calculus and therefore, only nil could follow an output action. Similarly,
x´<y1,..,yn>.nil outputs y1,..,yn on port x then behaves like nil.

Chapter 3. The Asynchronous π-calculus

 14

(4) A parallel composition ! 1|| ! 2, which represents the combined behavior of ! 1
and ! 2 executing in parallel. The components of ! 1 and ! 2 can act
independently, and may also communicate if one performs an output and the
other an input along the same port.

(5) ! 1 + ! 2 represents sum-nondeterminism, that is, do either process ! 1 or process
! 2.

(6) (new x) ! means that x is declared as a new name local to process ! and is
bound in ! . It is not visible outside ! .

(7) [x=y]! represents the process that changes to ! if x=y. Mismatch is the
 opposite, i.e., it checks x!=y.

(8) A(x1,..,xn) represents the instantiation of a defined agent.

(9) A(x1, ..,xn)=! (where i! j =>xi! xj) represents the declaration of a process A in
terms of process ! . One can think of it as a procedure declaration in traditional
procedural programming.

3.3 Free and Bound Occurrences of Names

The input prefix and the new operator bind the names. For example, in a process x(y).
! , the name y is bound. In (new x)! , x is considered to be bound. Every other
occurrences of a name like x in x(y).! and x, y in x´<y>.! are free.

3.4 Structural Congruence and Reaction

To simplify the definition of reaction relation, we first introduce a structural
congruence between process expressions.

Let P! be set of process expressions and let P, Q ! P! . Here P, Q are called
structurally congruent, written as P!Q, if one can be transferred into the other by,

(i) Renaming of bound names i.e. ! -conversion.

(ii) Reordering of terms in a summation i.e., commutativity of “+” i.e.,
 P + Q ! Q + P, P + (Q + R) ! (P + Q) + R

(iii) P || Q ! Q || P, P || (Q || R) ! (P || Q)|| R , P || nil ! P

(iv) (new x) (P || Q) ! P ||(new x) Q if x !freeName(P) , (new x) nil !nil

Chapter 3. The Asynchronous π-calculus

 15

The structural congruence is a congruence relation on P! i.e. if P!Q then,

(i) ! .P + R ! ! .Q + R

(ii) P || R ! Q || R and R || P!R || Q

(iii) (new x) P! (new x) Q

The reaction relation =>! P! is generated by the following rules:

()
.

tau
P Q P! + =>

()
(´ .) || (().) [/] ||

react
x z nil S x y P Q P y z nil< > + + =>

 (central rule)

´ ()
|| |́|
P P par

P Q P Q
=>

=>

P => P´
()

(new x) P => (new x) P´
res

´ ()
´

P P struct
Q Q
=>

=>
 if P!Q and P´!Q´

Here P[y/z] denotes the replacement of every free occurrences of y in P by z.

3.5 Scope Extrusion

The power of the ! -calculus arises from migrating local scopes. The new operator,
introduced above, declares a local name, of which no other process is aware. When
such a private link is passed to another process, it is called scope extrusion or
migration. Such scope migration is the central feature of ! -calculus and accounts for
the modelling of mobility. Normally, we need to apply react rule and congruence (iv)
for migrating the scope of the private link.

Let us illustrate scope extrusion with an example. We introduce a practical example to
show how the ! -calculus can be used.

Initially (Figure 3.2), only server process S has access to printer process P using a
private link a. We suppose that S also has a link b to the client process C and using
link b, client C can request server S to get access to printer P.

Chapter 3. The Asynchronous π-calculus

 16

As per the request of the printer P, server S is now willing to pass link a (private to S
and P) to C. Let S=b´<a>.S´ and C=b(y).C´. Then the composite process is
represented by

(new a) (b´<a>.S´ || P) || b(y).C´

 Here new a represents the privacy of S`s link to P. After a communication along b
from S to C the process becomes

(new a) (S´ || P || C´ [y/a])

The resulting configuration is shown in Figure 3.3. As a result, the scope of channel a
has effectively migrated from S to C.

S C

P

b

a

Client

Printer

Server

Figure 3.2 Server S has access to printer P

S´ C´

P

b

a

Client

Printer

Server

Figure 3.3 Client C has access to printer P

Chapter 4. An Initial Approach to Translation Mapping

 17

Chapter 4

An Initial Approach to Translation Mapping

In this chapter, the issue of a formal translation from a subset of Erlang to the π-
calculus has been presented. Some considerations, general notations and global
invariants are also provided to have the translation procedure easier. After presenting
the translation rules for each of the syntactic constructs of the Erlang subset, two
complete Erlang programs are translated to the π-calculus models. Furthermore, the
behaviors of gained π-models are compared with the behaviors of their corresponding
Erlang programs.

Table of Contents ⇒

4.1 Introduction
 4.1.1 Considerations
 4.1.2 General Notations
 4.1.3 Translation Functions
 4.1.4 Global Invariants

4.1.5 PIErlang-00 Syntax

-18
-18
-20
-20
-21
-21

4.2 Data Objects
 4.2.1 Integer
 4.2.2 Float
 4.2.3 Atom
 4.2.4 Variables

-21
-21
-24
-25
-26

4.3 Assignment Expressions
 4.3.1 Assignment Expression X=E1, E2
 4.3.2 Assignment Expression X=E

-27
-27
-28

4.4 Send Expression: PID as Implicit Mailbox -29
4.5 Function Call Expressions
 4.5.1 n-ary Function Call
 4.5.2 n-ary Spawn Call

-31
-31
-32

4.6 Sequence of Expressions -36
4.7 Receive Expression
 4.7.1 Matches of Receive Expression

 4.7.2 Match
 4.7.2(a) Match: Atoms as Patterns

 4.7.2(b) Match: Numbers as Patterns

 4.7.2(c) Match: Variables as Patterns

-37
-38
-39
-40
-41
-42

4.8 Case Expression

 4.8.1 Case: As a Sequence of Two Expressions

 4.8.2 Case: As a Modified Receive Expression

-44
-44
-47

Chapter 4. An Initial Approach to Translation Mapping

 18

4.1 Introduction

This chapter develops the translation procedure in a number of steps to illustrate the
decisions leading to the final design for a complete Erlang Program. Although in
Chapter 2, we have presented Erlang syntactic constructs altogether, during
translation mapping we have used four different Erlang versions starting from a very
restricted one and then gradually added more constructs to have a wider version of
Erlang with possible translation mapping in the asynchronous π-calculus.

4.1.1 Considerations

Erlang is a full programming language. It is not the aim to represent the behavior of a
given Erlang system in all of its facets. Rather, we have abstracted from certain details
to simplify the translation. Thus, initially only the following aspects will be covered:

Table of Contents ⇒

4.9. Receive and Case: Handling Non-determinism
 among Matches

-48

4.10 Function Definition -52
4.11 PIErlang Program
 4.11.1 PIErlang Program 4.1
 4.11.1(a) Execution in Erlang Compiler
 4.11.1(b) Translation in the π-calculus
 4.11.1(c) The π-model
 4.11.1(d) Observing Behavior in the π-
 calculus
 4.11.2 PIErlang Program 4.2
 4.11.2(a) Execution in Erlang Compiler
 4.11.2(b) Translation in the π-calculus
 4.11.2(c) The π-model
 4.11.2(d) Observing Behavior in the π-
 calculus
 4.11.2(e) An Enriched FSM of Program 4.2

-53
-54
-54
-55
-57
-57

-58
-59
-59
-62
-62

-63

4.12 TrPIs at a Glance

 4.12.1 Frequently Used TrPIs

 4.12.2 TrPIs for Handling Non-determinism
 among Matches

-65
-65
-67

Chapter 4. An Initial Approach to Translation Mapping

 19

 - Process creation,
 - Sending and receiving of messages,
 - Function calls,
 - Sequential control flow.

The following aspects related to data structures are ignored, although in some cases,
certain parts of the data space such as atoms are considered to be modeled.

 - Computations on low-level data types such as numbers,
 - Pattern matching,
 - Deterministic branching (in if/case/receive expressions).

As per the asynchronous message passing in Erlang, two ways of handling the
potentially unbounded mailbox are conceivable.

-Using Synchronous Message Passing.
-Using Asynchronous Message Passing.

Erlang uses asynchronous message passing scheme. Therefore, if we want to use
synchronous message passing, we have to model the mailbox explicitly. While
modelling mailbox explicitly, we can bound the size of the mailbox or we can support
the full semantics (unbounded size).

We have found that asynchronous π-calculus is one of the useful variants of π-
calculus to model asynchronous message passing scheme. But if we use asynchronous
π-calculus for Erlang’s asynchronous message passing, order of messages within the
sequential process is not respected which violates the semantics of mailbox in Erlang.
However, we also found that modelling mailbox explicitly with synchronous message
passing is more complicated and less useful than directly modelling asynchronous
message passing although order of messages is not respected. Thereby, we will use
asynchronous π-calculus for translation mapping by modelling the mailbox implicitly.

Furthermore, the translation mapping definitions are built on the formal syntax of the
presented Erlang programs with the following simplest settings:

- No complex data structures.
- No timing restrictions.

Altogether, the mapping from Erlang to the asynchronous π-calculus is provided with
several parameters which allow to tune the translation with respect to the above
aspects.

Chapter 4. An Initial Approach to Translation Mapping

 20

4.1.2 General Notations

In this section, some general notations are introduced. One of them is PID which will
be used as an acronym for Process Identifier.

We use the word π-calculus to mean the asynchronous (polyadic + monadic) π-
calculus. In this chapter, only monadic asynchronous π-calculus is used for
translation mapping.

While translating Erlang to π-calculus or derivation of a rule with a basic rule we have
used the notation: (n)
 Exp1 = Exp2

Here n corresponds to a rule number which has been applied to derive expression
Exp2 from Exp1. Some times more than one rules have been applied to get the Exp2
from Exp1 skipping some intermediate steps.

We have used the notation, (n1) -> (n2) to explicitly mention that first rule (n1)
 Exp1 = Exp2

has to be applied on Exp1 and then on the intermediate expression rule (n2) has been
applied to get expression Exp2.

While observing the translated π-calculus system behaviors, we have used the
notation, (string)
 System1 => System2

Where System2 state has been achieved from System1 state by applying the π-calculus
reaction rule or process definition and it will be indicated by string. Most of the cases,
we have used π-calculus Structural Congruence(cf. Chapter 3) among process
expressions to simplify the definition of reaction relation but we have neither
mentioned explicitly in string nor showed the intermediate system state(s).

4.1.3 Translation Functions

Two frequently used functions for translation mapping are TrPIarg and TrPIexp. TrPIarg

is used to translate any Argument of Erlang. Its signature is give below:

TrPIarg: Argument -> Name

This signature indicates that TrPIarg can translate any Number, Atom or Variable(cf.
Figure 4.1) to a Name in the π-calculus when they are used as the arguments of
function calls, spawn calls and send expressions. This is also needed while working
with patterns of receive expressions.

Chapter 4. An Initial Approach to Translation Mapping

 21

TrPIexp is used to translate any expression of Erlang to π-calculus. It has the following
signature:

TrPIexp: Name X Expression -> Process.

This signature indicates that TrPIexp will take a Name(normally PID for the
corresponding Expression) and an Erlang expression as input and will produce a
process as output. We will discuss both of the functions in the subsequent sections
with examples.

Some other functions like TrPImatch, TrPIfundef and TrPIprogram are used during the
translation procedure. Each of them will be discussed in details in the corresponding
sections.

4.1.4 Global Invariants

We have considered some global invariants during translation. These are as follows:

When the evaluation is terminated, the process TrPIexp(self, E) sends the value of the
expression E along some distinguishable channel. Normally, channel res will be used
for this purpose.

The evaluation result of a function fun will be sent along fun_res channel.

Name dummy will be used frequently to receive evaluation result of expression and
then will be discarded (later).

4.1.5 PIErlang-00 Syntax

In this chapter, a restricted subset of Erlang is chosen for translation mapping. We call
this subset PIErlang-00. The syntax of PIErlang-00 is shown in Figure 4.1. We will
discuss each of the syntactic constructs of PIErlang-00 while translating to π-calculus.

4.2 Data Objects

In PIErlang-00 syntax (cf. Figure 4.1), we have considered 2 simple data types,
Numbers(Integer & Float) and Atom. Here we have tried to have a corresponding
mapping in the π-calculus for each of them along with Variables.

4.2.1 Integer

As in π-calculus there are only Names and as our intention is to translate any Erlang
integer number into π-calculus, we have found that an integer number of Erlang could

Chapter 4. An Initial Approach to Translation Mapping

 22

be translated to a Name in π-calculus. We have not considered to represent any
constant in π-calculus semantically and therefore, we have decided that an Integer
number should be an unknown name in the π-calculus.

In our PIErlang, an integer number could be used as an argument or as an expression
and thereby, there are two kinds of mapping in the π-calculus for any integer number.

We have considered that if any integer is used as the Argument (cf. Figure 4.1) then
there should be a direct mapping in the π-calculus, the unknown name which can be
formally written as:

TrPIarg(n) : = unknown -(1)

Some examples:
TrPIarg(10888)=unknown
TrPIarg(-10888)=unknown
TrPIarg($A)=unknown
TrPIarg(1#0888)=unknown
TrPIarg(16#1A)=unknown

Program P ::= F+ ; E
Function Definition F ::= f(X1, X2, ….., Xn) -> E ; n >=0
Expression E ::= n | a | X

 | X = E1, E2 | X = E | E1, E2
 | f(A1, A2 ….An) | ; n>=0

 | spawn(f, [A1, A2,.., An]) ; n>=0
 | A1 ! A2

 | receive M1;..; Mn end ; n>0
 | case E of M1;..; Mn end ; n>0

 Match M :: = P -> E
 Pattern P :: = n | a | X
 Argument A :: = n | a | X

 n ∈ Numbers (Integer & Float);
 a, f ∈ Atoms ;
 X, X1,..,Xn ∈ Variables

Figure 4.1 PIErlang-00 syntax

Chapter 4. An Initial Approach to Translation Mapping

 23

From rule (1) along with the examples above, its clear that TrPIarg takes any number
as input and produces unknown, a name in the π-calculus as output.

We have also considered that if any integer is used as an expression, then there is
most likely that it will be used by the subsequent expression(s). Having this in mind,
we have introduced a new global name res in π-calculus to store the results of such
atomic expression. It is done by sending the integer number as the argument of the
send expression along the res channel. This can be formulated as follows:

TrPIexp(self, n) := res´<TrPIarg(n)>.nil
 (1)
 = res´<unknown >.nil -(2)

As integer number n is used here (rule(2)) as the argument of the send expression,
rule(1) is used to get its corresponding translation.

From the above representation, it is clear that any process can receive unknown (here
π-calculus corresponding name of any integer number) with the receive expression of
π-calculus along the channel res by executing in parallel with the send expression
above. Let consider there is a process res(y).Q (with PID qpid) which is ready to
receive any name z on port res and then would behave like Q[y/z]. It can be
represented formally as follows:

 (react)
res´<unknown>.nil || res(y).Q = > nil || Q[y/unknown]

In this way, every free occurrence of y in Q will be replaced by unknown.

res
self --

unknown

res´<unknown >.nil

 Figure 4.2 Graphical representation of rule(2)

res(y).Q

res
self qpid

unknown

res´<unknown >.nil

 Figure 4.3 Graphical representation of res´<unknown>.nil || res(y).Q

Chapter 4. An Initial Approach to Translation Mapping

 24

In rule (2), another global name self is included as the first parameter of the
translation function. Every expression in Erlang is evaluated by a certain process and
normally this is represented in Erlang with a BIF self(), the current process executing
the expression.

Some examples are:

TrPIexp(self, 10888) := res´<unknown >.nil
TrPIexp(self, -10888) := res´<unknown >.nil
TrPIexp(self, $A) := res´<unknown >.nil
TrPIexp(self, 1#0888) := res´<unknown >.nil
TrPIexp(self, 16#1A) := res´<unknown >.nil

4.2.2 Float

 We have also found that for any floating number in Erlang, there should be a
corresponding name in π-calculus for the same reason described above in the case of
Integer number. Therefore,

TrPIarg(fl) : = unknown -(1A)

Some examples are:
TrPIarg(16.0)=unknown
TrPIarg(-10.33)=unknown
TrPIarg(-1.8e2)=unknown
TrPIarg(-0.36e-2)=unknown
TrPIarg(1.0e6)=unknown etc.

For floating point expressions, we have used the same formalism as Integer
expressions as follows:

TrPIexp(self, fl) := res´<TrPIarg(fl)>.nil
 (1A)
 = res´<unknown >.nil -(2A)

Some examples are:

TrPIexp (self, 16.0)= res´<unknown >.nil
TrPIexp (self, -10.33)= res´<unknown >.nil
TrPIexp (self, -1.8e2)= res´<unknown >.nil
TrPIexp (self, -0.36e-2)= res´<unknown >.nil
TrPIexp (self, 1.0e6)= res´<unknown >.nil

Chapter 4. An Initial Approach to Translation Mapping

 25

However, from the translation mapping of Integer and Floating point numbers, it has
been found that both mappings can be treated in the same way and therefore, from
now for any number in PIErlang, rules (1) and (2) will be used ignoring (1A) & (2A).

4.2.3 Atom

Atoms are constant names in Erlang. The value of an atom is its name. Two atoms are
equivalent when they are spelt identically. We have found an easy mapping for atoms
in π-calculus, the so called names. We have taken the proposition that any atom in
PIErlang can be translated to a new global name in the π-calculus with the same
spelling and context of that atom without any changes.

However, depending on the context where an atom is used, the translation has been
divided in two types like for numbers mentioned above.

TrPIarg(a) : = a -(3)
and
TrPIexp(self, a) := res´<TrPIarg(a)>.nil
 (3)
 = res´<a >.nil -(4)

Some examples are:

Using rule (3)
TrPIarg(start) : = start
TrPIarg(end) : = end
TrPIarg(start_end) : = start_end

Using rule (4)
TrPIexp(self, start) : = res´<start >.nil
TrPIexp(self, end) : = res´<end >.nil
TrPIexp(self, start_end) : = res´<start_end >.nil

res
self --

a

res´<a>.nil

 Figure 4.4 Graphical representation of rule(4)

Chapter 4. An Initial Approach to Translation Mapping

 26

4.2.4 Variables

Erlang variables cannot be typed. A variable can be bound to any term. The scope
(region of the program in which a variable can be accessed) of a variable extends from
its first appearance in a clause through to the end of the clause in an Erlang function.
After analyzing the characteristics of an Erlang variable, we have found that any
variable in Erlang can be translated to a name in π-calculus with the same spelling and
context.

However, like Numbers or Atoms, it has also two kinds of mapping function
depending on the context of using.

TrPIarg(X) : = X -(5)
and
TrPIexp(self, X) := res´<TrPIarg(X)>.nil
 (5)
 = res´<X >.nil -(6)

Some examples are:
Using rule (5)

TrPIarg(Start) : = Start
TrPIarg(End) : = End
TrPIarg(Start_end) : = Start_end

Using rule (6)
TrPIexp(self, Start) : = res´<Start >.nil
TrPIexp(self, End) : = res´<End >.nil
TrPIexp(self, Start_end) : = res´<Start_end >.nil

Normally variables begin with uppercase letter. Uppercase names are allowed in π-
calculus where uppercase and lowercase names are distinct names with same spelling.
For example X and x are two distinct names in the π-calculus(cf. Chapter 3).

res
self --

X

res´<X>.nil

 Figure 4.5 Graphical representation of TrPIexp(self, X)

Chapter 4. An Initial Approach to Translation Mapping

 27

4.3 Assignment Expression(s)

In PIErlang-00 syntax(Figure 4.1), we have considered two types of assignment
expressions, X=E1, E2 where variable X could be used in expression E2 and X=E,
where there is no following expression.

4.3.1 Assignment Expression X=E1, E2

In Erlang, expressions X=E1, E2 means that the value of the expression E1 will be
evaluated and then assigned to variable X where X could be further used in the
expression E2. This could be translated to the π-calculus as follows:

TrPIexp(self, X = E1, E2):= new exp1_res(TrPIexp(self, E1) || exp1_res(X).TrPIexp(self, E2)) -(7)

In rule(7), two processes are executed in parallel, one is evaluating the expression E1
and another one is expecting the value of the expression in channel exp1_res. As soon
as the result is available in exp1_res channel, it will be received by the 2nd process and
then execution of remaining expression E2 will be started. Here we have used the
distinguishable channel name exp1_res to express clearly that result of evaluation of
expression E1 will be stored in channel exp1_res and along that channel exp1_res 2nd
process will receive the result in X. In this way, evaluation result of E1 can be used in
expression E2 as well. We have not considered X as a new name as we know that π-
calculus, receive action (here exp1_res(X)) binds X and thus both exp1_res and X are
bound names for this two parallel processes in π-calculus .

Let us consider an example:

Works=do_work,
fun_working(Works).

In Erlang, the first expression means that first the variable Works will be assigned the
atom do_work. Then the variable Works will be used in the 2nd expression. We have
assumed that the definition of the function fun_working() has been presented

self exp1_res
self

Evaluation
result of E1

TrPIexp(self, E1)

 Figure 4.6 Graphical representation of rule(7)

exp1_res(X).TrPIexp(self, E2)

Chapter 4. An Initial Approach to Translation Mapping

 28

somewhere else in the program and the above two expressions are executed in a
function that has its PID self.

Applying rule (7), we can translate these expressions in π-calculus as follows:

TrPIexp(self,
Works=do_work,
fun_working(Works).

 (7)
=new exp1_res(TrPIexp(self, Works=do_work) || exp1_res(Works).TrPIexp(self,
 fun_working(Works)))

=(cf. later sections)

4.3.2 Assignment Expression X=E

Another simple assignment expression is denoted as X=E where X is a variable and E
is an Expression. The evaluation result of E will be assigned to X after executing the
expression. This X then may or may not be used in the subsequent expression(s). We
have written the corresponding translation mapping function for expression X=E by
sending the evaluation result of expression E along the global channel res. Thereby,
any process having receive action along channel res can receive this result. As there
is no expression(s) following E, we have considered it in the following way:

TrPIexp(self, X = E):= TrPIexp(self, E) || res(X).nil -(8)

We have also included the global name self in the input parameters list along with the
expression in order to provide the PID of the process that is currently executing the
expression.

In the translation mappings, the expression E is translated first, result of evaluation of
E will be ultimately sent along the channel res depending on the context. After that a
parallel process has been included that will be used to receive data along res and binds

--
res

self

Evaluation
result of E

TrPIexp(self, E)

 Figure 4.7 Graphical representation of rule(8)

 res(X).nil

Chapter 4. An Initial Approach to Translation Mapping

 29

the received data with name X. In this way, the value of the expression is bound with
the name X in the π-calculus.

Let us consider an example,

Y = dowork

In PIErlang, this expression means that after executing it, the atom dowork will be
assigned to the variable Y where self is the PID of the process that executes the
expression.

Using rule (8), we can translate this expression into π-calculus as follows (here Y
corresponds to X and dowork corresponds to E in rule (8)):

 (8)
TrPIexp(self, Y=dowork)= res(TrPIexp(self, dowork) || res(Y) .nil)

(4)
 = res(res´<dowork>.nil || res(Y).nil)

The result of evaluating dowork is sent along channel res and a parallel process is
trying to receive the data along the same channel res by which the value of the
expression dowork will be bound with the name Y.

4.4 Send Expression: PID as Implicit Mailbox

In PIErlang-00 syntax(Figure 4.1), only variables, atoms and numbers are used as the
arguments of the send expression. The send expression is A1! A2 where A1 and A2

are place holder for Arguments(number, atoms and variables).

For a send expression A1 ! A2, in Erlang, we know that A1 is a PID and A2 is a
message that will be sent to the mailbox of the process identified by the PID stored in
A1 and the value of the expression A1! A2 is the value of the A2.

The corresponding π-calculus translation would be as follows:

TrPIexp (self, A1! A2):= (TrPIarg(A1))´< TrPIarg(A2)>.nil || res´<TrPIarg(A2)> .nil -(9)

Translation of send expression has introduced two processes working in parallel; one
is a direct mapping of the send expression in the π-calculus and another is sending the
message A2 to the res channel so that any other process waiting for a message from
res channel can receive that A2 with a receive expression along res. In this way, the
message is sent to the specific process identified by PID A1 and along the res channel.

Chapter 4. An Initial Approach to Translation Mapping

 30

Of course, it is needed to call the TrPIarg function to have a corresponding π-calculus
translation of arguments of the send expression.

Lets consider an example that has been used in previous section:

DestPid ! dowork;

In Erlang, this send expression means that atom dowork would be sent to the mailbox
of the process identified by the PID stored in the variable DestPid.

Using rule (9), we can obtain a corresponding π-calculus representation of the above
expression as follows:

 (9)
TrPIexp(self, DestPid ! dowork) := (TrPIarg (DestPid))´< TrPIarg (dowork)>.nil
 || res´< TrPIarg (dowork)>.nil

(5) & (3)
= DestPid´< dowork>.nil || res´< dowork>.nil

Here in the π-calculus representation, we have seen that the atom dowork is sent along
channel DestPid and along to the channel res.

In PIErlang, this DestPid is the PID of the process to which the atom dowork is sent
as message. Normally in PIErlang, message(s) is stored first in the mailbox of the
destination process(here DestPid). In π-calculus, we have done this by presenting
DesPid (PID of the destination process to which message has to be sent) as a channel
and sending the message over this channel thus, implicitly representing the mailbox of
the receiving process where the channel name DestPid is used as an implicit mailbox
of the process whose PID is DestPid. In this way, while receiving the message, the
receiver process (here same DestPid) will receive the message along channel name
DestPid. The message is also sent over the res channel so that any process having the

res

A1

--

self

TrPIexp (self, A1! A2)

 Figure 4.8 Graphical representation of rule(9)

A1

A2

A2

Chapter 4. An Initial Approach to Translation Mapping

 31

same res channel can receive the message. We will discuss about receiving message
in details in the following sections 4.7 and 4.9.

Similarly,
 (9)
TrPIexp(self, RemotePid ! 6) := (TrPIarg (RemotePid))´< TrPIarg (6)>.nil ||
 res´< TrPIarg (6)>.nil
(5) & (1)
= RemotePid´< unknown>.nil || res´< unknown>.nil

In this example, one interesting thing is the introduction of unknown name in π-
calculus representation. Here, we see that a number 6 is sent to the process identified
by the variable RemotePid. But as we know, we do not have any semantic
representation of any number in π-calculus, we have called the rule (1) to use an
unknown name instead of the number 6.

4.5 Function Call Expressions

In the expression of our PIErlang-00 syntax, we have introduced 2 different kinds of
function calls: n-ary function and n-ary spawn function.

4.5.1 n-ary Function Call

n-ary function call is an expression in Erlang. We have translated an n-ary Erlang
function call to (n+1)-ary process call in the π-calculus where the first argument will
be self, a new name representing the PID of the process executing the function
expression. Translation of n-ary function is as follows:

TrPIexp(self, f(A1, A2, ….., An)):= f(self, TrPIarg(A1), ……., TrPIarg(An)) -(10)

Only Arguments i.e. variables, numbers and atoms can be used as the arguments of
the function expression. To have a proper translation depending on the types of the
arguments, the TrPIarg translation function is applied for each of the arguments.

Similarly, for the 0-ary function expression, we can have the following translation
mapping:

TrPIexp(self, f()):= f(self) -(10A)

Let us consider a simple example:
 (10)
TrPIexp(self, start(Sunday, work, 5)):= start(self, TrPIarg(Sunday), TrPIarg(work),
 TrPIarg(5))

 (5) (3) & (1)
 = start(self, Sunday, work, unknown)

Chapter 4. An Initial Approach to Translation Mapping

 32

Similarly,
 (10A)
TrPIexp(self, start()):= start(self)

4.5.2 n-ary Spawn Call

Spawn call is like a function call, but instead of having the current process executes
the call, a new process is constructed. The child process will run in parallel with the
current, performing the function call. Spawn returns the PID of the newly created
process that executes the function which is used as a parameter of spawn call. If the
function call terminates, the process executing it will end. If the function call returns a
value, this value will be ignored. In PIErlang, spawn is simplified omitting the module
in which the function is placed.

The syntax of the restricted form spawn is as follows:

 spawn(f, [A1, A2, ….., An]) ; n>=0

Like function call arguments, only numbers, atoms and variables are used as the
arguments of the function of the spawn call.

Again, depending on the context we have two versions of spawn; one is storing the
newly returned PID in a variable and another one is ignoring it. First, we consider the
spawn where the newly constructed PID is stored in a variable for further use in the
subsequent expression(s). A translation mapping of such a spawn call is provided
below:

TrPIexp(self, X = spawn(f, [A1, ….., An]), E) := new fpid, p, f_res(p´<fpid>.nil ||
TrPIexp(fpid, f(A1, …., An)) || f_res(dummy).nil || p(X). TrPIexp (self, E)) -(11)

As before, self is included along with the spawn as one of the arguments of the
translation function to represent that the spawn function is executed by the current
process i.e. the process which has PID self(). After executing the spawn, the newly
created PID will be stored in the variable X and the function f will be executed by
newly created process in parallel with the main process(PID self()) where spawn
function is embedded.

Chapter 4. An Initial Approach to Translation Mapping

 33

In the translation mappings, three fresh names fpid, p and f_res have been created
where fpid is supposed to be the PID of newly created process which will execute
function f, p is used to send/receive the fpid and f_res is the channel through the result
of the evaluation of spawn will be sent. Bound name X is used to receive the fpid
along p for further use.

In rule(11), one process sends(p´<fpid>.nil) the PID fpid along p and the same PID is
used in the translation mapping of the function f(A1, …., An) by the second parallel
process(TrPIexp(fpid, f(A1, …., An))) which clearly specifies that newly created
process with PID fpid will execute the function f . There are also two more processes
working in parallel; one of which waits to receive something(return value of function
call) from the f_res channel and then discards the received value and another one
waits to receive fpid in name X. After receiving fpid in X, the current process (here
self) will execute the remaining expression E. In this way, along with reaction rule of
π-calculus, if there is any X in expression E that will be replaced by the PID fpid
which completely meets the context of the spawn function and our intention of
translation mapping. It could be explained more clearly with an example as follows:

SenderID=spawn(fun_working, [Day_start, tea_break, 5]),
SenderID ! dowork;

This is a part of a PIErlang program where spawn function is called with the function
fun_working having 3 arguments. The definition of the function fun_working has been
omitted here with a view to have simplicity in translation. The new PID created by the
spawn function is assigned to variable SenderID and to that process atom dowork will
be sent. Using rule (11), we can have a corresponding π-calculus translation as
follows:

TrPIexp(self, SenderID=spawn(fun_working, [Day_start, tea_break, 5]),
 SenderID ! dowork;)

 p´<fpid>.nil

self
p

fpid

fpid

TrPIexp(fpid, f(A1, …., An))

 Figure 4.9 Graphical representation of rule(11)

p(X). TrPIexp (self, E)

 --

Chapter 4. An Initial Approach to Translation Mapping

 34

(11)
 : = new fpid, p, fun_working_res(p´<fpid>.nil || TrPIexp(fpid,
 fun_working(Day_start, tea_break, 5)) || fun_working_res(dummy).nil ||
 p(SenderID).TrPIexp(self, SenderID ! dowork))

(10)
 = new fpid, p, fun_working_res(p´<fpid>.nil || fun_working(fpid,
TrPIarg(Day_start), TrPIarg(tea_break), TrPIarg(5))) || fun_working_res
(dummy).nil || p(SenderID). TrPIexp(self, SenderID ! dowork))

(5) (3) & (1)
 = new fpid, p, fun_working_res (p´<fpid>.nil || fun_working(fpid, Day_start,
 tea_break, unknown)) || fun_working_res(dummy).nil || p(SenderID).
 TrPIexp(self, SenderID ! dowork))

 (9)
 = new fpid, p, fun_working_res (p´<fpid>.nil || fun_working(fpid,
 Day_start, tea_break, unknown)) || fun_working_res (dummy).nil ||
 p(SenderID).(TrPIarg(SenderID))´<TrPIarg(dowork)>.nil || res´<
 TrPIarg(dowork)>.nil)

 (5) & (3)
 = new fpid, p, fun_working_res (p´<fpid>.nil || fun_working(fpid,
 Day_start, tea_break, unknown)) || fun_working_res (dummy).nil ||
 p(SenderID).(SenderID´<dowork>.nil || res´< dowork>.nil))

If we now apply the reaction rule of π-calculus on channel p then it will look like as
follows:

(react on p)
=>new fpid, p, fun_working_res (nil || fun_working(fpid, Day_start, tea_break,
 unknown)) || fun_working_res (dummy).nil || (fpid´<dowork>.nil ||
 res´<dowork>.nil))

By doing so, name SenderID is bound to PID fpid (outcome of spawn that executes
function fun_working) which could be used in the remaining expression.

In the 2nd type of spawn, the newly created PID is ignored rather storing it to a
variable. It has been assumed that the PID of the newly created process will no longer
be used in the subsequent expression(s). In the following, there is such kind of
translation mapping:

TrPIexp(self, spawn(f, [A1, .. ,An]) , E) := new fpid, f_res(TrPIexp(fpid, f(A1, ….,
 An)) || f_res(dummy).nil || TrPIexp(self, E)) -(12)

Chapter 4. An Initial Approach to Translation Mapping

 35

The only major difference between this rule (12) and the rule (11) is that in rule (12),
the remaining expression E is executed without waiting to receive the new PID fpid
along p since it has been assumed that evaluation of E will no longer in needed of the
PID fpid.

Lets consider a part of PIErlang program as follows:

spawn(fun_working, [Day_start, tea_break, 5]),
Friday = half_office;

With this partial program code, it has been noticed that PID created by spawn is not
stored to any variable as it will not be used in the subsequent expression(s) E (Here
Friday =half_office).

Using rule (12), we can have the corresponding π-calculus representation as follows:

TrPIexp(self, spawn(fun_working, [Day_start, tea_break, 5]),
 Friday = half_office;)

 (12)
 : = new fpid, fun_working_res(TrPIexp(fpid, fun_working(Day_start, tea_break, 5)) ||
 fun_working_res(dummy).nil || TrPIexp(self, Friday = half_office))

 (10)
= new fpid, fun_working_res (fun_working(fpid, TrPIarg(Day_start),
 TrPIarg(tea_break), TrPIarg(5)) || fun_working_res(dummy).nil || TrPIexp(self,
 Friday = half_office))

(5) (3) & (1)
= new fpid, fun_working_res(fun_working(fpid, Day_start, tea_break, unknown)
 || fun_working_res(dummy).nil || TrPIexp(self, Friday = half_office))

 (7)
= new fpid, fun_working_res (fun_working(fpid, Day_start, tea_break, unknown)
 || fun_working_res(dummy).nil || (new assn_res (TrPIexp(self, half_office)
 || assn_res(Friday).nil))

(3)

self fpid

TrPIexp(fpid, f(A1, …., An))

 Figure 4.10 Graphical representation of rule(12)

p(X). TrPIexp (self, E)

Chapter 4. An Initial Approach to Translation Mapping

 36

= new fpid, fun_working_res, assn_res (fun_working(fpid, Day_start,
 tea_break unknown) || fun_working_res(dummy).nil ||
 ((assn_res´<half_office>.nil || assn_res(Friday).nil))

4.6 Sequence of Expressions

In PIErlang, it has been presented that an expression could be also a composition of
two independent sub-expressions. This is formally denoted as E1, E2 where evaluation
of E2 is independent of evaluation of E1 but E2 will be evaluated only after evaluation
of E1. The corresponding π-calculus mapping of such sequence of expressions is
formed as follows:

TrPIexp(self, E1, E2):= new exp1_res (TrPIexp(self, E1)|| (exp1_res(dummy).
 TrPIexp(self, E2))) -(13)

From the π-calculus representation in rule(13), it is clear that expression E1 will be
evaluated first. In the 2nd process, we see that there is a receive action along exp1_res
before evaluating expression E2. This receive action can not be performed without
evaluation of E1, as E1 is the only candidate that can send its result along channel
exp1_res. As soon as E1 is evaluated and its result is passed through channel
exp1_res, receive action exp1_res(dummy) will be performed with the reaction rule of
π-calculus and then evaluation of E2 will be started, thus forcing E2 to be evaluated
after E1. Here it has to be noticed that we have discarded the received value (in
dummy) as it is not needed in evaluation of E2.

Lets consider the following two expressions which are independent of each other and
we want to keep the order of evaluation as it is in the context.

do_work,
go_market ;

The corresponding π-calculus representation using rule (13) will be as follows:

self exp1_res
self

Evaluation
result of E1

TrPIexp(self, E1)

 Figure 4.11 Graphical representation of rule(13)

exp1_res(dummy).TrPIexp(self, E2)

Chapter 4. An Initial Approach to Translation Mapping

 37

TrPIexp(self, do_work,
 go_market;)

(13)
:= new exp1_res(TrPIexp(self, do_work) ||
 exp1_res(dummy).TrPIexp(self, go_market))
(4)
= new exp1_res(exp1_res´<do_work>.nil ||
 exp1_res(dummy).TrPIexp(self, go_market))

(4)
= new exp1_res, exp2_res (exp1_res´<do_work>.nil ||
 exp1_res(dummy).exp2_res´<go_market>.nil)

Here it has been seen that although the 2nd process is discarding the received result of
evaluation of expression E1, the evaluation of expression E2 is now in order as we
expected i.e. evaluating E2 after E1.

4.7 Receive Expression

In Section 4.4, we have discussed the message (only a number or an atom or a
variable) passing mechanism to a specific process, where we have considered the
process identifier of the process to which the message is to sent as the channel along
which the potential message has to be sent. Consider the example given in Section
4.4,

DestPid ! dowork;

We got the translation mapping in π-calculus as follows,
 DestPid´< dowork>.nil || res´< dowork>.nil

The message dowork is sent over the channel DestPid and also along the res channel.
We have also discussed (cf. Section 4.4) that this representation is an implicit
representation of the process’s (here DestPid) mailbox.

Now consider that receiver process (here DestPid is the process identifier of the
receiver process) is ready to receive message along channel DestPid and after
receiving any message along DestPid, it would be in state Q. This receiving scenario
can be written in π-calculus as follows:

DestPid(input_pat).Q

The bound name input_pat will be bound to Q with the corresponding receiving
element along channel DestPid.

Chapter 4. An Initial Approach to Translation Mapping

 38

Now consider that both the sender and receiver processes are working in parallel to
have a communication between them.

DestPid´<dowork>.nil || res´< dowork>.nil || DestPid(input_pat).Q

Now using the reaction rule of π-calculus we can obtain,

(react on DestPid)
=> nil || res´< dowork>.nil || Q[input_pat/dowork]

The receiver process will now work as Q by replacing every free occurrence of
input_pat in Q by dowork.

There is still another process which sends the message over the global result channel
res with a view to enable any other process to receive that sent message along the
same res channel. However, use of res is completely dependent on the context of
using. We will present more about this with some examples later in Chapter 5.

Until now, we have discussed so far the sending and basic receiving mechanism of
PIErlang in π-calculus perspective. The sending of message discussed in Section 4.4
is sound enough to meet the presented send expression. However, the receiving
mechanism in PIErlang is not so straight forward. The general syntax that we have
presented in PIErlang is resembled as follows:

receive
 Pattern1 -> Body1;
 ...;
 PatternN -> BodyN
end

The receiver process receives messages sent to its mailbox by any process. The
patterns Pattern are sequentially matched against the first message in time order in the
mailbox, then the second, and so on. If a match succeeds the corresponding Body is
evaluated. The matching message is consumed, that is removed from the mailbox,
while any other messages in the mailbox remain unchanged. The return value of Body
is the return value of the receive expression. Receive never fails. Execution is
suspended, possibly indefinitely, until a message arrives that does match one of the
patterns.

4.7.1 Matches of Receive Expression

Receive has the branching feature of a case expression and also has to match the
reception semantics of PIErlang. Because of the quite inadequate statements available

Chapter 4. An Initial Approach to Translation Mapping

 39

in π-calculus, the translation is not so accurate to meet reception semantics. We have
choosen the asynchronous π-calculus as our target specification language where the
order of the received massages cound not be respected. It was beyond the scope of
this thesis to model the mailbox explicitly to have the full semantics of a receive
statement using synchronous π-calculus. We have considered that the non-
deterministic choices among the translated matches of the receive statement would be
the translation of a receive statement in the π-calculus.

TrPIexp(self, receive M1; …;Mn end)

:=TrPImatch(self, M1) +.. + TrPImatch(self, Mn) -(14)

The whole receive expression is splitted into the non-derterministic choices of the
single match expressions. We also see that if the name self is used for the whole
receive expression, then self is also used in the single-match expressions too. As
before, self is the process identifier of the process that executes the receive expression.

Let us consider an example,

 receive
 Monday -> work;
 saturday ->take_rest
 end

We can present this receive expression using rule (14) as follows:

TrPIexp(self, receive
 saturday ->take_rest
 Monday -> work;
 end)
(14)
= TrPImatch(self, Monday -> work) + TrPImatch(self, saturday -> take_rest)

From this simple example, it is now clear that we have decomposed (as
nondeterminism) the receive expression into two smaller Match expressions, each
expression is for each match of the receive expression. Another function named
TrPImatch is used for translation mapping each of the single-match expressions. We
will now try to present the TrPImatch function formally with several small examples.

4.7.2 Match

In PIErlang, a match is of the form P->E, where pattern P could be a variable, or an
atom or a number only. We have introduced pattern matching in receive and case

Chapter 4. An Initial Approach to Translation Mapping

 40

expressions. In this section, we will discuss about the pattern matching translations for
the receive expression only.

We have tried to translate such match in the π-calculus with TrPImatch function which
has the following signature.

TrPImatch : Name X Match -> Process

In the definition of TrPImatch, a name along with the match are used as the Input and as
Output, a process in the π-calculus is produced. Here name is the so called self, the
process identifier of the process executing the receive expression.

4.7.2(a) Match: Atoms as Patterns

We have applied the name matching feature of the π-calculus to handle pattern
matching of PIErlang. First, consider the match of the form a -> E. Here the pattern a
is an atom and expression E could be any valid expression built from PIErlang-00.

Here is the translation mapping of such a pattern:

TrPImatch (self, a -> E)

 :=self(input_pat).[input_pat= TrPIarg(a)] TrPIexp(self, E)

Match a->E with the so-called name self are provided to the TrPImatch function as
Input. As Output, along self target message will be received in input_pat which will
be matched against the pattern (here with atom a) of the given match. As we have
only considered atoms, numbers or variables to be a pattern in the match, we also
need to call the TrPIarg function to the pattern. Using rule (3) of arguments translation,
the final translation mapping for atom as pattern can be written as follows:

TrPImatch (self, a -> E)
:=self(input_pat).[input_pat = a] TrPIexp(self, E) -(15)

Receiving action self(input_pat) binds the name input_pat, it is not required to declare
input_pat as a new name during translation mapping.

Let us consider a simple example:

 receive
 monday -> Work = 8
 end

This program segment indicates that if the potential input message is an atom named
monday then it will be matched with the given pattern monday, consequently the

Chapter 4. An Initial Approach to Translation Mapping

 41

expression Work=8 will be evaluated. Applying rule(15), we can have a π-calculus
representation of this program segment as follows:

TrPIexp(self, receive
 monday -> Work = 8
 end)

(14)
=TrPImatch(self, monday -> Work = 8)

(15)
=self(input_pat).[input_pat=monday]TrPIexp(self, Work = 8)

(8)
= new exp_res (self(input_pat).[input_pat=monday](TrPIexp(self, 8) ||
 exp_res(Work).nil))

(2)
:= new exp_res (self(input_pat).[input_pat=monday](exp_res´<unknown>.nil ||
 exp_res(Work).nil))

4.7.2(b) Match: Numbers as Patterns

Like atoms in Section 4.7.2(a), for matching of numbers we get the following
translation mapping function:

TrPImatch(self, n -> E)

:= self(input_pat).[input_pat = TrPIarg(n)] TrPIexp(self, E)

Applying rule (1), we get the following translation mapping function for numbers as
patterns:

TrPImatch (self, n -> E)
:=self(input_pat).[input_pat = unknown] TrPIexp(self, E) -(16)

Let us consider another program segment,

 receive
 10 -> Work =do
 end

From the code segment, it is clear that if the input pattern is 10, then atom do will be
assigned to variable Work.

Chapter 4. An Initial Approach to Translation Mapping

 42

Applying rule (16), the corresponding π-calculus representation would be as follows:

TrPIexp(self, receive
 10 -> Work =do
 end)

(14)
=TrPImatch(self, 10 -> Work =do)

(16)
:=self(input_pat).[input_pat=unknown] TrPIexp(self, Work =do)

(8)
=self(input_pat).[input_pat=unknown] (TrPIexp(self, do) || res(Work).nil)

(4)
=self(input_pat).[input_pat=unknown] (res´<do>.nil || res(Work).nil)

According to rules (15) and (16), a message(a number or an atom) will be sent by the
current process or by some other processes along the self channel and that message
will be received here, matched against the given pattern, if name matching is
successful then the remaining body expression E will be evaluated.

4.7.2(c) Match: Variables as Patterns

With rules (15) and (16) we can only deal with atoms and numbers as patterns. As
already mentioned, variable can match with any term, therefore, no name matching is
required for a variable as pattern in our single-match translation mapping. However,
this variable pattern could be used in the body expression E where the corresponding
received message is expected to be substituted in place of the variable. Thereby, we
have used the substitution feature of the π-calculus on the corresponding bound name
with the variable in Body expression E. The translation mapping for variable as
pattern has been presented as follows:

TrPImatch (self, X -> E)

:= self(input_pat).(TrPIexp(self, E)[X/input_pat]) -(17)

Where [X/input_pat] denotes the replacement of every free occurrences of X in
translated E by input_pat.

Potential message(sent term) will be received along the self channel in input_pat and
evaluation of E will be started. Name matching is not required here, since variable
pattern can be matched with any received term. The variable pattern X could be used

Chapter 4. An Initial Approach to Translation Mapping

 43

in expression E, thereby, the substitution feature of π-calculus is applied to replace X
with the received message. However, we can consider a more simplified version as
follows:

TrPImatch (self, X -> E)

:= self(X).TrPIexp(self, E) -(17A)

We notice that we have used the same variable name X as the received name along
channel self. The intention of doing so is that variable X could be used in the
evaluation of E and therefore, we have bound the received term in X so that while
evaluating E, received term will be used in place of X. We have not used name
matching here as well.

Consider an example of variable pattern as follows:

 receive
 Monday -> Duties = Monday
 end

This program segment indicates that whatever the input pattern is, expression Duties
=Monday will be evaluated as variable pattern can be matched with any term.

The corresponding π-calculus representation can be obtained using rule (17A) as
follows:

TrPIexp(self,
 receive

 Monday -> Duties = Monday
 end)

(14)
=TrPImatch(self, Monday -> Duties = Monday)

 (17A)
:= self(Monday).TrPIexp(self, Duties = Monday)

(8)
=self(Monday).(TrPIexp(self, Monday) || res(Duties).nil)

(6)
=self(Monday).(res´<Monday>.nil || res(Duties).nil)

Now we see that along self input term will be received and bound in variable Monday.
After that with the reaction rule of π-calculus, content of Monday will be bound with

Chapter 4. An Initial Approach to Translation Mapping

 44

variable Duties which was the same intention as we expected from PIErlang code
segment. We will discuss in details about variable pattern in Chapter 5.

Finally, consider another example with two matches:

TrPIexp(self, receive
saturday ->take_rest ;
Monday -> work

 end)

(14)
:=TrPImatch(self, saturday -> take_rest) + TrPImatch(self, Monday -> work)

 (15) (17A)
=self(input_pat).[input_pat=saturday] TrPIexp(self, take_rest) +
 self(Monday).TrPIexp(self, work)

(4)
=self(input_pat).[input_pat=saturday] res´<take_rest>.nil +
 self(Monday).res´<work>.nil

4.8 Case Expression

The general form of a case expression in PIErlang is as follows:

case E of
 P1->E1;
 …. ;
 Pn->En
 end

The case head expression E is evaluated and the patterns P1,..,Pn are sequentially
matched against the result. If a match succeeds the corresponding body expression is
evaluated. For instance, if the evaluation result of case head E is matched with pattern
P3, corresponding body expression E3 will be evaluated. The return value of body
expression is the return value of the case expression. If there is no matching pattern, a
case_clause run-time error will be occurred. To avoid such run-time error, we
consider that in case expression, there will be at least one matching pattern.

4.8.1 Case: As a Sequence of Two Expressions

To have an easier translation mapping rule for case expression, it is rewritten as the
sequence of two sub-expressions as follows:

Chapter 4. An Initial Approach to Translation Mapping

 45

 X=E,
 case X of
 P1->E1;
 …. ;
 Pn->En
 end

Case expression is rewritten as a sequence of two expressions where the first one is an
assignment expression of returning the evaluation result of case head expression E to
an unbound variable X and the second expression is again a case expression where in
case head, bound variable X (as it has been bound in previous assignment expression)
is used. While working with a bound variable in case head, translation mapping seems
to be very straight forward as we can directly use name matching feature for X against
the patterns of the matches of the case expression. However, in this case, the
evaluation result of case head expression E must be a single value like a number, an
atom or a bound variable. We can formally present the mapping rule as follows:

TrPIexp(self, case E of
 P1->E1;
 …. ;
 Pn->En
 end)

:=TrPIexp(self, X=E,
 case X of

 P1->E1;
 …. ;
 Pn->En

 end)
(7)
:=new exp1_res(TrPIexp(self, E) || exp1_res(X).TrPIexp(self,
 case X of

P1->E1
…. ;

 Pn->En
 end))

:=new exp1_res(TrPIexp(self, E) || exp1_res(X).([X=TrPIarg(P1)] TrPIexp(self, E1)
 + ..+ [X=TrPIarg(Pn)] TrPIexp(self, En)) –(18)

Chapter 4. An Initial Approach to Translation Mapping

 46

It has to be noted that evaluation result of E is to be sent along exp1_res as per rule the
rule of sequence of expressions(rule(7)). When a variable is as pattern in any of the
matches, the corresponding name matching expression will be ignored in rule (18).
This pattern variable could be used in the body expression which is not handled in
rule (18).

Consider another example where case head is a 3-ary function call,

case fun_working(Start, End, Busy) of
 true -> dowork;
 false -> take_rest;
 undefined -> sleep
 end.

Using rule (18), its translation will be as follows:

TrPIexp(self, case fun_working(Start, End, Busy) of
 true -> dowork;
 false -> take_rest;
 undefined -> sleep
 end.)

:=TrPIexp(self, X=fun_working(Start, End, Busy),
 case X of
 true -> dowork;
 false -> take_rest;
 undefined -> sleep
 end.)

(18) & (3)
= new exp1_res(TrPIexp(self, fun_working(Start, End, Busy)) || exp1_res(X).(
 [X=true] TrPIexp(self, dowork) + [X=false] TrPIexp(self, take_rest) +
 [X=undefined] TrPIexp(self, sleep)))

(10) & (5)
= new exp1_res(fun_working(self, Start, End, Busy) || exp1_res(X).([X=true]
 TrPIexp(self, dowork) + [X=false] TrPIexp(self, take_rest) + [X=undefined]
 TrPIexp(self, sleep)))

Chapter 4. An Initial Approach to Translation Mapping

 47

 (4)
= new exp1_res(fun_working(self, Start, End, Busy) || exp1_res (X).([X=true]
 res´<dowork>.nil + [X=false] res´<take_rest>.nil + [X=undefined]
 res´<sleep>.nil))

While evaluating process fun_working(self, Start, End, Busy), its evaluation result will
not be sent along the fun_working_res channel as per the global invariant in Section
4.1.4, rather, will be sent along exp1_res channel. The 2nd process is waiting to
receive something along channel exp1_res in X, therefore, as soon as the evaluation
result of the function fun_working is sent along exp1_res, with reaction rule of π-
calculus that result will be bound with name X and then X will be used for name
matching and if matching is successful with any of the patterns corresponding body
expression will be returned as the result of the case expression in res channel.

4.8.2 Case: As a Modified Receive Expression

Rule (18) works fine when the patterns of the Matches are numbers or atoms. It
cannot handle variable pattern accurately, especially, when the pattern variable is used
in the corresponding body expression. The syntax of case expression resembles
receive expression in the sense of using Matches. Matches in the case expression can
be tackled with the same way as presented for receive expression in Sections 4.7.2(a),
4.7.2(b) and 4.7.2(c). The issue of using variable as pattern in Matches is presented in
Section 4.7.2(c) for receive expression Matches. Therefore, if we can map the case
expression to the receive expression, translation mapping will be easier and accurate.
In the following, there is a formal representation of such mapping:

TrPIexp(self, case E of M1; …; Mn end) := new case_res (TrPIexp(self, E) ||
 TrPIexp(case_res, receive M1; M2;...;Mn end))

(14)
= new case_res(TrPIexp(self, E) || (TrPImatch(case_res, M1) + …

+ TrPImatch(case_res, Mn))) -(19)

In rule(19), one process evaluates the case head expression and sends the result along
fresh channel case_res and this case_res is used in evaluating the Matches of case
expression, in stead of using self like in receive expression. With rule(19), any
expression can be used in case head provided that evaluation rule(s) is available for
that expression which overcomes the limitations of rule(18).

Chapter 4. An Initial Approach to Translation Mapping

 48

Let us consider a simple case expression:

 case Status of
 true -> dowork;
 false -> take_rest;
 Y -> Y
 end.

Using rule (19), it is possible to translate the above case expression efficiently and
accurately with existing rules for Matches as follows:

 TrPIexp(self, case Status of
 true -> dowork;
 false -> take_rest;
 Y -> Y
 end.)
(19)
= new case_res (TrPIexp(self, Status) || TrPIexp(case_res, receive

 true -> dowork;
 false -> take_rest;
 Y -> Y

 end.))
(14)
= new case_res(TrPIexp(self, Status) || (TrPImatch(case_res, true -> dowork) +
 TrPImatch(case_res, false -> take_rest) + TrPImatch(case_res, Y -> Y)))

((6) with res -> case_res)
= new case_res(case_res´<Status>.nil || (TrPImatch(case_res, true -> dowork) +
 TrPImatch(case_res, false -> take_rest) + TrPImatch(case_res, Y -> Y)))

(15) (17A) ->(4) (6)
= new case_res(case_res´<Status>.nil ||
 (case_res(input_pat1).[input_pat1=true]res´<dowork>.nil +
 case_res(input_pat2).[input_pat2=false]res´<take_rest>.nil +
 case_res(Y). res´<Y>.nil))

4.9. Receive and Case: Handling Non-determinism among Matches

If there is only one matching pattern each time of execution in receive or case
expressions then rule(14) and hence rules (15), (16), (17A) and (19) work accurately.
But, if there are more than one matches for each execution then the corresponding

Chapter 4. An Initial Approach to Translation Mapping

 49

receive/case body evaluation choice would be non-deterministic as we have already
applied non-determinism between different choices.

Let us consider the translation result of the example of Section 4.8.2,

TrPIexp(self, case Status of
 true -> dowork;
 false -> take_rest;
 Y -> Y
 end.)
= new case_res(case_res´<Status>.nil ||
 (case_res(input_pat1).[input_pat1=true]res´<dowork>.nil +
 case_res(input_pat2).[input_pat2=false]res´<take_rest>.nil +
 case_res(Y). res´<Y>.nil))

This translation is not error-free. Let us suppose that atom false is bound with the
variable Status in case head. In Erlang, only second Match(false ->take_rest) succeeds
as there is an order in matching. But in π-calculus translation, we have used non-
determinism between different matches and hence, there is a possibility that variable
Status can match with 2nd or 3rd matches. To avoid such non-determinism between the
matching clauses, we have negated (mismatch) the conditions for the preceding
matching clauses so that a clause that comes after another clause in order cannot be
selected if the preceding one could have been selected. This can be formally defined
with the following rule (19A):

TrPIexp(self, case E of
 P1->E1;
 …. ;
 Pn->En
 end)

:=new case_res(TrPIexp(self, E) ||
 (case_res(input_pat1).[input_pat1= TrPIarg(P1)] TrPIexp(self, E1) +
 case_res(input_pat2).[input_pat2 != TrPIarg(P1)] [input_pat2= TrPIarg(P2)]
 TrPIexp(self, E2) + ….+
 case_res(input_patn).[input_patn != TrPIarg(P1)]…. [input_patn != TrPIarg(Pn-1)]
 [input_patn= TrPIarg(Pn)] TrPIexp(self, En))) -(19A)

If a variable is used as a pattern in any of the matches, then we will use the techniques
of rule (17A) and also apply negation(Mismatch) on the patterns of the preceding

Chapter 4. An Initial Approach to Translation Mapping

 50

clauses. For instance, let pattern Pi is a variable X for ith Match. The translation of this
Match will be as follows:

case_res(X).[X != TrPIarg(P1)]…. [X != TrPIarg(Pi-1)] TrPIexp(self, Ei)))

In this way, we can modify the rules for matches (rules (15) (16) & (17A)) with the
help of an additional information, the index (position in order) of the potential Match
to be translated in Erlang program.

If an atom is used as a pattern in the ith Match, then rule (15), can be modified as
follows:

TrPImatchi(self, a -> Ei)
:=self(input_pati).[input_pati ! = TrPIarg(P1)]…. [input_pati != TrPIarg(Pi-1)]
 [input_pati = a] TrPIexp(self, Ei) -(15A)

Similarly, if a number is used as a pattern in the ith Match, then rule (16), can be
modified as follows:

TrPImatchi(self, n -> Ei)
:=self(input_pati).[input_pati ! = TrPIarg(P1)]…. [input_pati != TrPIarg(Pi-1)]
 [input_pati = unknown] TrPIexp(self, Ei) -(16A)

Finally, if a variable is used as a pattern in the ith Match, then rule (17A), can be
modified as follows:

TrPImatchi(self, X -> Ei)
:=self(X).[X ! = TrPIarg(P1)]…. [X != TrPIarg(Pi-1)] TrPIexp(self, Ei) -(17B)

As we see, rule(19A) is a result of applying rules (15A), (16A) and (17B) on rule (19).

As a result, we can now rewrite rule(14) and (19) to be suitable for applying new
match rules (15A), (16A) and (17B) by providing the index of the Matches as follows:

Rule(14) can be rewritten as follows:

TrPIexp(self, receive M1; …;Mn end)

:=TrPImatch1(self, M1) +.. + TrPImatchn(self, Mn) -(14A)

Similarly, rule(19) can be rewritten as follows:

TrPIexp(self, case E of M1; …; Mn end) :=new case_res(TrPIexp(self, E) ||
 (TrPImatch1(case_res, M1) + … + TrPImatchn(case_res, Mn))) -(19B)

Chapter 4. An Initial Approach to Translation Mapping

 51

Consider the following receive expression:

 receive
saturday ->take_rest ;
 2-> go_i2;
Monday -> Monday

 end

Using rule(14A), we can translate this expression by avoiding the non-determinism
among matches as follows:

TrPIexp(self, receive
saturday ->take_rest ;
 2-> go_i2;
Monday ->Monday

 end)

(14A)
:=TrPImatch1(self, saturday ->take_rest) + TrPImatch2(self, 2-> go_i2) +
 TrPImatch3(self, Monday ->Monday)

Now applying rule(15A) for TrPImatch1, rule(16A) for TrPImatch2 and rule(17B) for
TrPImatch3, we obtain,

:=self(input_pat1).[input_pat1=saturday] TrPIexp(self, take_rest)
+ self(input_pat2).[input_pat2 != saturday][input_pat2=unknown] TrPIexp(self, go_i2)
+ self(Monday).[Monday != saturday] [Monday != unknown] TrPIexp(self, Monday)

(4) (6)
:=self(input_pat1).[input_pat1=saturday] res´<take_rest>.nil
+ self(input_pat2).[input_pat2 != saturday][input_pat2=unknown] res´<go_i2>.nil
+ self(Monday).[Monday != saturday] [Monday != unknown] res´<Monday>.nil

Similarly, consider the example of Section 4.8.2 again,

case Status of
 true -> dowork;
 false -> take_rest;
 Y -> Y
 end.

Chapter 4. An Initial Approach to Translation Mapping

 52

Using rule(19B), we can translate this expression by avoiding the non-determinism
among matches as follows:

TrPIexp(self, case Status of
 true -> dowork;
 false -> take_rest;
 Y -> Y
 end)

(19B)
:= new case_res(TrPIexp(self, Status) || (TrPImatch1(case_res, true -> dowork) +
 TrPImatch2(case_res, false -> take_rest) + TrPImatch3(case_res, Y -> Y)))

((6) with res ->case_res)
:= new case_res(case_res´<Status>.nil || (TrPImatch1(case_res, true -> dowork) +
 TrPImatch2(case_res, false -> take_rest) + TrPImatch3(case_res, Y -> Y)))

Now applying rule(15A) for TrPImatch1 & TrPImatch2 and rule(17B) for TrPImatch3, we
obtain,

:= new case_res(case_res´<Status>.nil ||
 (case_res(input_pat1).[input_pat1= true] TrPIexp(self, dowork) +
 case_res(input_pat2). [input_pat2 != true] [input_pat2 = false] TrPIexp(self,
 take_rest) + case_res(Y). [Y!= true] [Y !=false] TrPIexp(self, Y)))

(4) (6)
:= new case_res(case_res´<Status>.nil ||
 (case_res(input_pat1).[input_pat1= true] res´<dowork>.nil +
 case_res(input_pat2). [input_pat2 != true] [input_pat2 = false] res´<take_rest>.nil
 + case_res(Y). [Y!= true] [Y !=false] res´<Y>.nil))

4.10 Function Definition

In PIErlang, the general form of a function definition is presented as follows:

Function Definition F ::= f(X1, X2, ….., Xn) -> E
 where n>=0 and X1,…,Xn are variables.

Each function definition in PIErlang will be translated to a corresponding process
definition in π-calculus which can be formally written as follow:

TrPIfundef : Function Definition -> Process Definition

We consider that a n-ary function definition of Erlang should be translated to a (n +
1)-ary process definition in π-calculus where the first argument will be self which has

Chapter 4. An Initial Approach to Translation Mapping

 53

been included to indicate the current process, executing the function definition in
Erlang. Here are the corresponding π-calculus mapping of n-ary and 0-ary function
definitions.

TrPIfundef(self, f (X1, …….,Xn) -> E) := f(self, X1, ….., Xn) = TrPIexp(self, E) -(20)

TrPIfundef(self, f () -> E) := f(self) = TrPIexp(self, E) -(20A)

Let us consider an example of a 2-ary function definition:

start(Monday_ Pid, Friday_Pid)->
 Monday_Pid ! do_work,
 Friday_Pid ! go_market;

The overall meaning of this program segment is intuitive. In the variables
Monday_Pid and Friday_Pid, two different PIDs are assigned somewhere else in the
program before calling this function definition. When executing this function
definition atoms do_work and go_market are sent to the corresponding processes.

We can now use rule (20) to get a corresponding π-calculus representation of this
function definition as follows:

TrPIfundef(self, start(Monday_Pid, Friday_Pid)-> Monday_Pid ! do_work,
 Friday_Pid ! go_market;)
(20)
:=start(self, Monday_Pid, Friday_Pid)=TrPIexp(self, Monday_Pid !do_work,
 Friday_Pid ! go_market;)
(13)
= start(self, Monday_Pid, Friday_Pid)= new exp1_res(TrPIexp(self, Monday_Pid !
 do_work) || exp1_res(dummy). (TrPIexp(self, Friday_Pid ! go_market)))

(9) (5) & (3)
= start(self, Monday_Pid, Friday_Pid)= new exp1_res, exp2_res
 (Monday_Pid´<do_work>.nil || exp1_res´ <do_work>.nil || exp1_res(dummy).(
 Friday_Pid´<go_market>.nil || exp2_res´<go_market>.nil))

Again, tt has to be noted that self is used as an input parameter of the translation
function along with the function definition to indicate that this function definition is
executed by a process whose PID is self.

4.11 PIErlang Program

Until now, we have discussed the translation mappings for each of the syntactic
constructs of PIErlang-00 with simple corresponding examples. In this section, we

Chapter 4. An Initial Approach to Translation Mapping

 54

have presented the way of how to translate a complete PIErlang Program in π-
calculus.

We consider a function TrPIprogram takes a PIErlang Program as Input and will return a
System model in the π-calculus as Output. A formal representation is as follows:

TrPIprogram : Program -> System

TrPIprogram(self, F1; ….., Fn, E) := TrPIfundef(self, F1), ……….., TrPIfundef(self, Fn),
 main()= new self(TrPIexp(self, E)) –(21)

PIErlang Program is composed of a sequence of function definitions followed by an
expression, E where E is supposed to be executed in the Erlang Abstract Machine.
Usually E is an 0-ary function that is placed at the beginning of the program and
mostly the left hand side of the first function definition. Our translated System will
start executing with the main() function in π-calculus.

4.11.1 PIErlang Program 4.1

Let us consider the following program written in PIErlang-00:

sender() -> Receiver_Pid = spawn(receiver, []),
 Receiver_Pid ! hello.

receiver() -> receive
 Y -> Y
 end

Program 4.1 A simple sender receiver program

4.11.1(a) Execution in Erlang Compiler

In Program 4.1(or Figure 4.12), it is seen that 0-ary function sender() is invoking a
spawn function with 0-ary function receiver(). The PID generating by the
spawn(receiver, []) function is then assigned to a variable Receiver_Pid along which
the atom hello is sent.

In function receiver(), which should be evaluated by the process with PID assigned to
Receiver_Pid, has a receive expression. As variable can match any received pattern
and thus, directly produces the same output because on the right hand side same
variable is placed as an expression.

Chapter 4. An Initial Approach to Translation Mapping

 55

According to Erlang’s spawn, send and receive behaviors, function receiver() is now
being processed by a process whose PID is assigned to Receiver_Pid. In the same

time, atom hello is sent to the function receiver() which is the return value of the
receiver process(cf. Figure 4.12). In this way, it is found that there is an asynchronous
communication between the sender and the receiver processes.

4.11.1(b) Translation in the π-calculus

According to rule (21) let,

F1 ::= sender() ->
 Receiver_Pid = spawn(receiver, []),
 Receiver_Pid ! hello.

F2 :: = receiver() ->
 receive
 Y -> Y
 end
and finally,

E :: = sender()
Let us start with the translations of the function definitions one by one and then the
expression E as follows.

TrPIfundef(self, F1) = TrPIfundef (self, sender() ->
 Receiver_Pid = spawn(receiver, []),
 Receiver_Pid ! hello.)
(20A)
= sender(self) = TrPIexp(self, Receiver_Pid = spawn(receiver, []),
 Receiver_Pid ! hello.)

self fpid

sender() receiver() spawn

self fpid
 hello

Y=hello
“hello”

Figure 4.12 Schematic diagram of the simple sender receiver Program 4.1

Chapter 4. An Initial Approach to Translation Mapping

 56

(11)
= new rpid, p, receiver_res (p´<rpid>.nil || TrPIexp(rpid, receiver())||
 receiver_res(dummy).nil || p(Receiver_Pid).TrPIexp(self, Receiver_Pid ! hello))

(10A) & (9)
= new rpid, p, receiver_res, send_res (p´<rpid>.nil || receiver(rpid) ||
 receiver_res(dummy).nil || p(Receiver_Pid). ((TrPIarg(Receiver_Pid))´
 < TrPIarg(hello)>.nil || send_res´< TrPIarg (hello) > .nil))

(3) & (5)
= new rpid, p, receiver_res, send_res (p´<rpid>.nil || receiver(rpid) ||
 receiver_res(dummy).nil || p(Receiver_Pid). (Receiver_Pid´ <hello>.nil ||
 send_res´< hello > .nil))

TrPIfundef(self, F2) = TrPIfundef (self, receiver() ->
 receive
 Y -> Y
 end)
 (20A)
= receiver(self) = TrPIexp(self, receive
 Y -> Y
 end)
(14)
=TrPImatch(self, Y -> Y)

(17A)
=self(Y).TrPIexp(self, Y)

 (6)
= new receiver_res(self(Y).receiver_res´<Y>.nil)

and finally,

 main() = TrPIexp(self, E)= new self(TrPIexp(self, sender())

 (10A)
= new self (sender(self))

It has been observed that we have created a special channel receiver_res to
store(ready to be received by someone over the same channel) the results received by
receiver() which is actually the return value of this function. We also notice that we
have used the same channel for spawn function too as receiver() was first started to be
executed there.

Chapter 4. An Initial Approach to Translation Mapping

 57

4.11.1(c) The π-model

From Section 4.11.1(b), the π-model of Program 4.1 can be written as follows:

main()=new self (sender(self))

sender(self) = new rpid, p, receiver_res, send_res (p´<rpid>.nil || receiver(rpid) ||
 receiver_res(dummy).nil || p(Receiver_Pid). (Receiver_Pid´ <hello>.nil ||
 send_res´< hello > .nil))

 receiver(self) = new receiver_res(self(Y).receiver_res´<Y>.nil)

4.11.1(d) Observing Behavior in the π-calculus

To observe the System behavior in π-calculus, we have to start from the main()
Process.

main()=new self(sender(self))

=>new self, rpid, p, receiver_res, send_res (p´<rpid>.nil || receiver(rpid) ||
 receiver_res(dummy).nil || p(Receiver_Pid). (Receiver_Pid´ <hello>.nil ||
 send_res´< hello > .nil))

(react p, Receiver_Pid is bound with PID rpid of receiver process) ->(omitting nil)
=>new self, rpid, p, receiver_res, send_res (receiver(rpid) || receiver_res(dummy).nil
 || (rpid´ <hello>.nil || send_res´< hello > .nil))

Message hello is sent along rpid but no one is here to receive that along channel rpid.
Therefore, now receiver(rpid) has to be instantiated.

(substituting rhs definition of receiver(rpid), here self -> rpid)
=>new self, rpid, p, receiver_res, send_res (rpid(Y).receiver_res´<Y>.nil ||
 receiver_res(dummy).nil || (rpid´ <hello>.nil || send_res´< hello > .nil))

(react on rpid, Y is now bound with hello)
=>new self, rpid, p, receiver_res, send_res (receiver_res´<hello>.nil ||
 receiver_res(dummy).nil || (nil || send_res´< hello > .nil))

In π-calculus System, we got the same message hello in the result channel of receiver
process receiver_res which exactly fulfills our expected behavior of translated system
in π-calculus.

Chapter 4. An Initial Approach to Translation Mapping

 58

4.11.2 PIErlang Program 4.2

Let us consider the example of the Finite State Machine (FSM) from [1].

The Figure 4.12 shows a simple FSM with four states, the possible transitions and the
events which cause them. One easy way to program such a state X event machine is
shown in Program 4.2. In this code, we are only interested in how to represent the
states and manage the transitions between them. Each state is represented by a
separate function and events are represented by messages.

start()->
 State_Pid = spawn(s1, []),
 State_Pid ! msg_a.

s1()->
 receive
 msg_a-> s2();
 msg_c-> s3()
 end.

S1

S4
S3

S2

msg_b

msg_a

msg_c

msg_x

msg_y

msg_i

msg_h

 Figure 4.13 Graphical representation of Simple FSM Program 4.2.

Chapter 4. An Initial Approach to Translation Mapping

 59

s2()->
 receive
 msg_x-> s3();
 msg_h-> s4()
 end.

s3()->
 receive
 msg_b-> s1();
 msg_y-> s2()
 end.

s4()->
 receive
 msg_i-> s3()
 end.

Program 4.2 A simple FSM program

4.11.2(a) Execution in Erlang Compiler

The state functions (Figure 4.12 and Program 4.2) wait in a receive for an event
message. When a message has been received, the FSM makes a transition to the new
state by calling the function for that state. By making sure that each call to a new state
is a last call, the FSM process will evaluate in constant space.

To have a simplified version of event passing, we have only considered that message
msg_a is sent to state one by the main program. From the diagram or PIErlang
program above, it is clear that if State One is received a message named msg_a, then
there would be changes of state, from State One to State Two. We would like to
observe now the corresponding π-calculus System behavior by translating the above
program into π-calculus System.

4.11.2(b) Translation in the π-calculus

According to rule (21) let,

F1::= start()->
 State_Pid = spawn(s1, []);
 State_Pid ! msg_a;

Chapter 4. An Initial Approach to Translation Mapping

 60

F2::= s1()->
 receive
 msg_a-> s2();
 msg_c-> s3();
 end.

F3::= s2()->
 receive
 msg_x-> s3();
 msg_h-> s4();
 end.

F4:: =s3()->
 receive
 msg_b-> s1();
 msg_y-> s2();
 end.

F5::= s4()->
 receive
 msg_i-> s3();
 end.

E::=start()

Here,
main()=new self(TrPIexp(self, start()))

(10A)
 =new self (start(self))

TrPIfundef(self, F1):= TrPIfundef(self, start()->
 State_Pid = spawn(s1, []),
 State_Pid ! msg_a.)
(20A)
=start(self) = TrPIexp(self, State_Pid = spawn(s1, [])
 State_Pid ! msg_a.)
(11)
=new fpid, receiver_res, p (p´<fpid>.nil || TrPIexp(fpid, s1()) ||
 receiver_res(dummy).nil || p(State_Pid).(TrPIexp(self, State_Pid ! msg_a)))

Chapter 4. An Initial Approach to Translation Mapping

 61

(10A) & (9) ->(5) & (3)
=new fpid, receiver_res, p, send_res (p´<fpid>.nil || s1(fpid) ||
 receiver_res(dummy).nil || p(State_Pid).(State_Pid´<msg_a>.nil ||
 send_res´<msg_a>.nil))

TrPIfundef(self, F2): = TrPIfundef(self, s1()->
 receive
 msg_a-> s2();
 msg_c-> s3();
 end.)
 (20A)
= s1(self)= TrPIexp(self, receive
 msg_a-> s2();
 msg_c-> s3();
 end.)
(14)
= TrPImatch(self, msg_a-> s2()) + TrPImatch(self, msg_c-> s3())

(15)
= self(input_pat1).[input_pat1 = msg_a] TrPIexp(self, s2()) +
 self(input_pat2).[input_pat2 = msg_c] TrPIexp(self, s3())

(10A)
= self(input_pat1).[input_pat1 = msg_a] s2(self) +
 self(input_pat2).[input_pat2 = msg_c] s3(self)

Similarly,
TrPIfundef(self, F3): = TrPIfundef(self, s2()->
 receive
 msg_x-> s3();
 msg_h-> s4();
 end.)

(20A) ->(14)->(15)->(10A)
=s2(self)= self(input_pat1).[input_pat1 = msg_x] s3(self) +
 self(input_pat2).[input_pat2 = msg_h] s4(self)

TrPIfundef(self, F4): = TrPIfundef(self, s3()->
 receive
 msg_b-> s1();
 msg_y-> s2();
 end.)

Chapter 4. An Initial Approach to Translation Mapping

 62

(20A) ->(14)->(15)->(10A)
= s3(self)= self(input_pat1).[input_pat1 = msg_b] s1(self) +
 self(input_pat2).[input_pat2 = msg_y] s2(self)

TrPIfundef(self, F5): = TrPIfundef(self, s4()->
 receive
 msg_i-> s3();
 end.)
(20A) ->(15)->(10A)
= s4(self)= self(input_pat).[input_pat = msg_i] s3(self)

4.11.2(c) The π-model

From Section 4.11.2(b), the π-model of Program 4.2 can be written as follows:

main()==new self (start(self))

start(self) = new fpid, receiver_res, p, send_res (p´<fpid>.nil || s1(fpid) ||
 receiver_res(dummy).nil || p(State_Pid).(State_Pid´<msg_a>.nil ||
 send_res´<msg_a>.nil))

s1(self)= self(input_pat1).[input_pat1 = msg_a] s2(self) +
 self(input_pat2).[input_pat2 = msg_c] s3(self)

s2(self)= self(input_pat1).[input_pat1 = msg_x] s3(self) +
 self(input_pat2).[input_pat2 = msg_h] s4(self)

 s3(self)= self(input_pat1).[input_pat1 = msg_b] s1(self) +
 self(input_pat2).[input_pat2 = msg_y] s2(self)

 s4(self)= self(input_pat).[input_pat = msg_i] s3(self)

4.11.2(d) Observing Behavior in the π-calculus

To observe the System behavior in π-calculus, we have to start from the main()
Process.

main()=new self(start(self))

(substituting rhs definition of start(self))
=>new self, fpid, receiver_res, p, send_res (p´<fpid>.nil || s1(fpid) ||
 receiver_res(dummy).nil || p(State_Pid).(State_Pid´<msg_a>.nil ||
 send_res´<msg_a>.nil))

Chapter 4. An Initial Approach to Translation Mapping

 63

 (react on p, State_pid is now bound with PID fpid)->(Omitting nil process)
=>new self, fpid, receiver_res, p, send_res (s1(fpid) || receiver_res(dummy).nil ||
 (fpid´<msg_a>.nil || send_res´<msg_a>.nil))

(substituting rhs definition of s1(self) with self -> fpid)
=>new self, fpid, receiver_res, p, send_res ((fpid(input_pat1).[input_pat1 =
 msg_a] s2(fpid) + fpid(input_pat2).[input_pat2 = msg_c] s3(fpid)) ||
 receiver_res(dummy).nil || (fpid´<msg_a>.nil || send_res´<msg_a>.nil))

(react on fpid, input_pat1 is now bound with atom msg_a)
=>new self, fpid, receiver_res, p, send_res (([msg_a = msg_a] s2(fpid)) ||
 receiver_res(dummy).nil || (nil || send_res´<msg_a>.nil))

A name matching [msg_a = msg_a] is found and in this way we move from State One
to State Two by means of calling the corresponding process calls which is same as we
can expect from PIErlang Program 4.2 and from the FSM diagram in Figure 4.12.

4.11.2(e) An Enriched FSM of Program 4.2

Now consider that F1 is enriched with one more send expression as follows:

F1::= start()->
 State_Pid = spawn(s1, []);
 State_Pid ! msg_a;
 State_Pid ! msg_h;

Initially, spawn function is called with State One and then messages msg_a and
msg_h are sent sequentially. According to the FSM diagram or its PIErlang
representation above, we should now move from State One to State two for message
msg_a and then from State Two to State Four for message msg_h. First, we have
translated this enriched start() function and then we have tried to observe what could
be happened in π-calculus with this enriched system. Other translations remain same

as of Section 4.11.2(c).

TrPIfundef(self, F1):= TrPIfundef(self, start()->
 State_Pid = spawn(s1, []);
 State_Pid ! msg_a,
 State_Pid ! msg_h.)

Chapter 4. An Initial Approach to Translation Mapping

 64

(20A)
=start(self) = TrPIexp(self, State_Pid = spawn(s1, []);
 State_Pid ! msg_a,
 State_Pid ! msg_h.)

(11)
=new fpid, receiver_res, p(p´<fpid>.nil || TrPIexp(fpid, s1()) ||
 receiver_res(dummy).nil || p(State_Pid).(TrPIexp(self, State_Pid ! msg_a ,
 State_Pid ! msg_h)))

(10A) & (13)
=new fpid, receiver_res, p, send1_res(p´<fpid>.nil || s1(fpid) ||
 receiver_res(dummy).nil || p(State_Pid).(TrPIexp(self, State_Pid ! msg_a) ||
 send1_res(dummy).(TrPIexp(self, State_Pid ! msg_h)))

 (9) ->(5) & (3)
=new fpid, receiver_res, p, send1_res, send2_res(p´<fpid>.nil || s1(fpid) ||
 receiver_res(dummy).nil || p(State_Pid).(State_Pid´< msg_a>.nil ||
 send1_res´<msg_a>.nil || send1_res(dummy).(State_Pid´<msg_h>.nil ||
 send2_res´<msg_h>.nil)))

Observing behavior in π-calculus:

main()=new self(start(self))

(substituting rhs definition of start(self))
=>new self, fpid, receiver_res, p, send1_res, send2_res(p´<fpid>.nil || s1(fpid) ||
 receiver_res(dummy).nil || p(State_Pid).(State_Pid´< msg_a>.nil ||
 send1_res´<msg_a>.nil || send1_res(dummy).(State_Pid´<msg_h>.nil ||
 send2_res´<msg_h>.nil)))

(react on p, State_pid is now bound with PID fpid)->(Omitting nil process)
=>new self, fpid, receiver_res, p, send1_res, send2_res(s1(fpid) ||
 receiver_res(dummy).nil || (fpid´< msg_a>.nil || send1_res´<msg_a>.nil ||
 send1_res(dummy).(fpid´<msg_h>.nil || send2_res´<msg_h>.nil)))

(substituting rhs definition of s1(self) with self -> fpid)
=>new self, fpid, receiver_res, p, send1_res, send2_res((
 fpid(input_pat1).[input_pat1 =msg_a] s2(fpid) + fpid(input_pat2).[input_pat2=
 msg_c] s3(fpid)) || receiver_res(dummy).nil || (fpid´< msg_a>.nil ||
 send1_res´<msg_a>.nil || send1_res(dummy).(fpid´<msg_h>.nil ||
 send2_res´<msg_h>.nil)))

Chapter 4. An Initial Approach to Translation Mapping

 65

(react on fpid, input_pat1 is now bound with atom msg_a)
=>new self, fpid, receiver_res, p, send1_res, send2_res(([msg_a =msg_a] s2(fpid))
 || receiver_res(dummy).nil || (nil || send1_res´<msg_a>.nil ||
 send1_res(dummy).(fpid´<msg_h>.nil || send2_res´<msg_h>.nil)))

Here a name matching [msg_a =msg_a] is found and thereby moving to State Two.

 (substituting rhs definition of s2(self) with self -> fpid, react on send1_res, this is a
dummy reaction to maintain the sequence of evaluation)
=>new self, fpid, receiver_res, p, send1_res, send2_res((fpid(input_pat1).[input_pat1
 =msg_x] s3(fpid) + fpid(input_pat2).[input_pat2 = msg_h] s4(fpid)) ||
 receiver_res(dummy).nil || (nil || nil || (fpid´<msg_h>.nil ||
 send2_res´<msg_h>.nil)))

(react on fpid, input_pat2 is now bound with atom msg_h)
=>new self, fpid, receiver_res, p, send1_res, send2_res(([msg_h = msg_h] s4(fpid))
 || receiver_res(dummy).nil || (nil || nil || (nil || send2_res´<msg_h>.nil)))

Again a name matching [msg_h = msg_h] is found and we see that with this name
matching we are moving to State Four which is the same as we can expect from the
PIErlang Program code and FSM diagram above.

4.12 TrPIs at a Glance

In this section we have presented the translation mapping rules in a top-down fashion
so that any user can easily grasp the rules while translation mapping. Although there
are more rules in the corresponding sections, we have only presented those rules here
that we will use frequently in translation mappings.

4.12.1 Frequently Used TrPIs

This section consists of most frequently used translation rules.

TrPIprogram : Program -> System

TrPIprogram(self, F1; ….., Fn, E) := TrPIfundef(self, F1), ……….., TrPIfundef(self, Fn),
 main()= new self(TrPIexp(self, E)) –(21)

TrPIfundef : Function Definition -> Process Definition

TrPIfundef(self, f (X1, …….,Xn) -> E) := f(self, X1, ….., Xn) = TrPIexp(self, E) -(20)

TrPIfundef(self, f () -> E) := f(self) = TrPIexp(self, E) -(20A)

Chapter 4. An Initial Approach to Translation Mapping

 66

TrPIexp: Name X Expression -> Process

TrPIexp(self, n) := res´<unknown >.nil -(2)

TrPIexp(self, a) := res´<a >.nil -(4)

TrPIexp(self, X) := res´<X >.nil -(6)

TrPIexp(self, X = E1, E2):= new exp1_res(TrPIexp(self, E1) || exp1_res(X).TrPIexp(self, E2)) -(7)

TrPIexp(self, X = E):= TrPIexp(self, E) || res(X).nil -(8)

TrPIexp (self, A1! A2):= (TrPIarg(A1))´< TrPIarg(A2)>.nil || res´<TrPIarg(A2)> .nil -(9)
TrPIexp(self, f(A1, A2, ….., An)):= f(self, TrPIarg(A1), ……., TrPIarg(An)) -(10)

TrPIexp(self, f()):= f(self) -(10A)

TrPIexp(self, X = spawn(f, [A1,.., An]), E) := new fpid, p, f_res(p´<fpid>.nil ||
 TrPIexp(fpid, f(A1, …., An)) || f_res(dummy).nil || p(X). TrPIexp (self, E)) -(11)

TrPIexp(self, spawn(f, [A1, .. ,An]) , E) := new fpid, f_res(TrPIexp(fpid, f(A1, ….,
 An)) || f_res(dummy).nil || TrPIexp(self, E)) -(12)

TrPIexp(self, E1, E2):= new exp1_res (TrPIexp(self, E1)|| (exp1_res(dummy).
 TrPIexp(self, E2))) -(13)

TrPIexp(self, receive M1; …;Mn end)
:=TrPImatch(self, M1) +.. + TrPImatch(self, Mn) -(14)

TrPIexp(self, case E of M1; …; Mn end)

:= new case_res(TrPIexp(self, E) || (TrPImatch(case_res, M1) + …
+ TrPImatch(case_res, Mn))) -(19)

TrPImatch: Name X Match -> Process

TrPImatch (self, a -> E) :=self(input_pat).[input_pat = a] TrPIexp(self, E) -(15)

TrPImatch (self, n -> E) :=self(input_pat).[input_pat = unknown] TrPIexp(self, E) -(16)

TrPImatch (self, X -> E):= self(X).TrPIexp(self, E) -(17A)

TrPIarg: Argument -> Name

TrPIarg(n) : = unknown -(1)
TrPIarg(a) : = a -(3)
TrPIarg(X) : = X -(5)

Chapter 4. An Initial Approach to Translation Mapping

 67

4.12.2 TrPIs for Handling Non-determinism among Matches

This section consists of the rules for handling non-determinism among the Matches of
receive and case expressions.

TrPIexp: Name X Expression -> Process

TrPIexp(self, receive M1; …;Mn end)

:=TrPImatch1(self, M1) +.. + TrPImatchn(self, Mn) -(14A)

TrPIexp(self, case E of M1; …; Mn end) :=new case_res(TrPIexp(self, E) ||
 (TrPImatch1(case_res, M1) + … + TrPImatchn(case_res, Mn))) -(19B)

TrPImatch: Name X Match -> Process

TrPImatchi(self, a -> Ei)
:=self(input_pati).[input_pati ! = TrPIarg(P1)]…. [input_pati != TrPIarg(Pi-1)]
 [input_pati = a] TrPIexp(self, Ei) -(15A)

TrPImatchi(self, n -> Ei)
:=self(input_pati).[input_pati ! = TrPIarg(P1)]…. [input_pati != TrPIarg(Pi-1)]
 [input_pati = unknown] TrPIexp(self, Ei) -(16A)

TrPImatchi(self, X -> Ei)
:=self(X).[X ! = TrPIarg(P1)]…. [X != TrPIarg(Pi-1)] TrPIexp(self, Ei) -(17B)

Chapter 5. Mapping Tuples with Polyadic Communications

 68

Chapter 5

Mapping Tuples with Polyadic Communications

This chapter focuses on the use of tuple in Erlang with its corresponding translation
mapping in π-calculus using polyadic communication. The asynchronous polyadic π-
calculus is used to provide a detailed step by step translation of any non-nested tuple-
based expression of Erlang. Several distinguishable PIErlang programs are translated
to π-calculus system models and compared the execution behavior with their
corresponding PIErlang programs. This chapter also gives a formal treatment of the
BIF self().

⇒

T
able of C

ontents

5.1 PIErlang-01 Syntax -69
5.2 BIF self()
 5.2.1 BIF self():Used As Argument
 5.2.2 PIErlang Program 5.1: self() as Argument
 5.2.2(a) Execution in PIErlang Compiler
 5.2.2(b) Translation in the π-calculus
 5.2.2(c) The π-Model
 5.2.2(d) Observing Behavior in π-calculus

-70
-71
-71
-71
-72
-72
-72

 5.2.3 BIF self(): Used As Expression
 5.2.4 PIErlang Program 5.2: self() as Expression
 5.2.4(a) Execution in PIErlang Compiler
 5.2.4(b) Translation in the π-calculus
 5.2.4(c) The π-Model
 5.2.4(d) Observing Behavior in π-calculus

-73
-73
-73
-74
-75
-75

5.3 Tuples as Expression -76
5.4 Tuples in Send Expression: PID as Implicit Mailbox -76
5.5 Tuples in Receive Expression: PID as Implicit Mailbox
 5.5.1 Receive Action in Polyadic π-calculus
 5.5.2 Matches of Receive Expression

-77
-77
-78

 5.5.3 Matches
 5.5.3(a) Matches: Atoms & Numbers as Elements of Tuple
 5.5.3(b) Matches: Variables as Elements of Tuple

-79
-80
-80

 5.5.4 PIErlang Program 5.3: CAR for DC Rule
 5.5.4(a) Execution in PIErlang Compiler
 5.5.4(b) Translation in the π-calculus
 5.5.4(c) The π-Model
 5.5.4(d) Observing Behavior in π-calculus: CAR for DC

-82
-82
-83
-84
-85

 5.5.5 PIErlang Program 5.4: Variables as Tuple Elements

 5.5.5(a) Execution in PIErlang Compiler
 5.5.5(b) Translation in the π-calculus
 5.5.5(c) The π-Model
 5.5.5(d) Observing Behavior in π-calculus

-89
-89
-90
-91
-91

Chapter 5. Mapping Tuples with Polyadic Communications

 69

5.1 PIErlang-01 Syntax

In Chapter 4, we have discussed the translation mapping based on the PIErlang-00,
which was really a very restricted subset of Erlang. In this chapter, we will present a

 5.5.6 PIErlang Program 5.5: Inaccuracy of Rule(26A)
 5.5.6(a) Execution in PIErlang Compiler
 5.5.6(b) Translation in the π-calculus
 5.5.6(c) The π-Model
 5.5.6(d) Observing Behavior in π-calculus: Rule (26A) is
 Insufficient.

-92
-93
-94
-95

-95

 5.5.7 An Approach to Improve Rule (26A)
 5.5.7(a) Modification of Rule (26A): Providing BVS
 5.5.7(b) Modification of Rule (26B): Providing BNS
 5.5.7(c) Betterment of Rule (26C) over Rule(26B)

-96
-97
-98
-100

 5.5.8 PIErlang Program 5.5: Rule (26C) is Sound but has Extra
 Names in BNS
 5.5.8(a) Execution in PIErlang Compiler
 5.5.8(b) Translation in the π-calculus
 5.5.8(c) The π-Model
 5.5.8(d) Observing Behavior in π-calculus

-100
-100
-100
-103
-104

 5.5.9 Improving Rule (26C): Providing BNSRAV -108
 5.5.10 PIErlang Program 5.6: Rule (26D) Sounds Perfect
 5.5.10(a) Execution in PIErlang Compiler
 5.5.10(b) Translation in the π-calculus
 5.5.10(c) The π-Model
 5.5.10(d) Observing Behavior in π-calculus

-109
-110
-110
-113
-114

5.6 Tuples in Case Expressions
 5.6.1 PIErlang Program 5.7: Tuples in Case Expression
 5.6.1(a) Execution in PIErlang Compiler
 5.6.1(b) Translation in the π-calculus
 5.6.1(c) The π-Model
 5.6.1(d) Observing Behavior in π-calculus

-119
-119
-119
-120
-121
-122

5.7 An Approach to Improve Send Rule (25)
 5.7.1 PIErlang Program 5.8: Send rule(25) is Insufficient
 5.7.1(a) Execution in PIErlang Compiler
 5.7.1(b) Translation in the π-calculus
 5.7.1(c) The π-Model
 5.7.1(d) Observing Behavior in π-calculus
 5.7.2 A Modification to Send Rule (25)
 5.7. 3. PIErlang Program 5.8: Send Rule(25A) Sounds Correct
 5.7.3(a) Execution in PIErlang Compiler
 5.7.3(b) Translation in the π-calculus
 5.7.3(c) The π-Model
 5.7.3(d) Observing Behavior in π-calculus

-123
-124
-124
-125
-126
-126
-127
-127
-127
-128
-128
-128

5.8 An Approach to Improve Tuple Expression Rule (24) -130
5.9 An Alternative Approach for Match Rule (26D) -130
5.10 TrPIs at a Glance -131

Chapter 5. Mapping Tuples with Polyadic Communications

 70

wider PIErlang Version named as PIErlang-01 with its corresponding translation
mapping in the π-calculus. This version of PIErlang is a composition of the previous
version PIERlang-00 and some additional syntactic constructs marked as boldface as
in the following Figure 5.1 for supporting use of tuples as a message in send
expression and as patterns in matches of receive and case expressions. In this Chapter
5, along with the new rules, we have also used the translation mapping rules (rule (1)
to rule (21)) presented in Chapter 4 and therefore, in this Chapter first rule will be
numbered with rule (22), second will be with (23) and so on.

Many of the core concepts discussed in this chapter would resemble the concepts that
we have already discussed in Chapter 4. Here our intention is to incorporate uses of
tuples in send, receive and case expressions applying the same concept that we have
discussed in Chapter 4 for number, atom and variable. We have also introduced the
built-in-function self() of Erlang.

5.2 BIF self()

First addition to PIErlang-01 is self(), a BIF of Erlang which is frequently used in
Erlang to represent current Process Identifier(PID) of the process executing the

Program P ::= F+ ; E
Function Definition F ::= f(X1, X2, ….., Xn) -> E ; n >=0
Expression E ::= n | a | X

 | X = E1, E2 | X = E | E1, E2
 | f(A1,..,An) | self() ; n>=0

 | spawn(f, [A1, A2,...,An]) ; n>=0
 | {A1,…,An} ; n>=0
 | A1 ! A2 | A ! {A1,…,An} ; n>=0

 | receive M1;…; Mn end ; n>0
 | case E of M1;...; Mn end ; n>0

 Match M :: = P -> E | {P1,..., Pn} ->E ; n>=0
 Pattern P :: = n | a | X
 Argument A :: = n | a | X | self()

 n ∈ Numbers(Integer & Float) ;
 a, f ∈ Atoms ;
 X, X1,...,Xn ∈Variables;

Figure 5.1 PIErlang-01 (added syntactic constructs are marked with boldface)

Chapter 5. Mapping Tuples with Polyadic Communications

 71

expression. We have found that this BIF can also be used as an argument for function
calls, send, receive and case expressions.

A process in the PIErlang or even in Erlang has the more or less same behavior(cf.
Section 1.2) as in the π-calculus; therefore, a PID in Erlang would be a unique process
in π-calculus. At that moment, we have only considered the self() function of our
PIErlang. It has two types of translation depending on the context where it is used.

5.2.1 BIF self(): Used As Argument

If self() is used as an argument for function call, send expression, receive expression
or for case expression then the translation would be as follow:

TrPIarg(self()) : = self -(22)

Here self would not be a new name in the π-calculus. It should be noted that we have
used self for translation mapping in Chapter 4. It is used there as a new name within
the whole system indicating that the expression where it is used, is executed by a
process which has a PID self. As we have already considered self as a new name in
our translation in the π-calculus, we will not consider it as a separate new name
anymore.

5.2.2 PIErlang Program 5.1: self() as Argument

Let us consider a simple example[11] where self is used as an argument of the send
expression:

foo() ->
 self() ! stop,
 receive
 stop -> terminate
 end.

Program 5.1. A program that sends a message to itself and then terminates.

5.2.2(a) Execution in PIErlang Compiler

Program 5.1 is a very simple program that sends a message to itself and then
terminates. Function foo() is executed by a process and the PID of that process is
represented by the BIF self() which implies that foo process sends atom stop to its
own. On the other hand, it waits to receive any atomic message. If the received
message is an atom stop, it will be terminated with atom terminate.

Chapter 5. Mapping Tuples with Polyadic Communications

 72

5.2.2(b) Translation in the π-calculus

According to rule (21), here, main() = new self(TrPIexp(self, foo()))

(10A)
 = new self(foo(self))

TrPIfundef (self, foo() ->
 self() ! stop,
 receive
 stop -> terminate
 end.)

 (20A)->(13)
 =foo(self)= new send_res (TrPIexp(self, self()! stop) || send_res(dummy).(
 TrPIexp(self, receive
 stop -> terminate
 end)))

((9) -> (22) & (3)) & (15)
 = new send_res (self´<stop>.nil || send_res´<stop>.nil || send_res(dummy).(
 self(input_pat).[input_pat=stop] TrPIexp(self, terminate)))

(4, new result channel receive_res is added to send result of the receiver)
 = new send_res (self´<stop>.nil || send_res´<stop>.nil || send_res(dummy).(
 self(input_pat).[input_pat=stop] receive_res´<terminate>.nil))

5.2.2(c) The π-Model

From Section 5.2.2(b), the π-model of Program 5.1 can be written as follows:

main() = new self(foo(self))

foo(self)= new send_res (self´<stop>.nil || send_res´<stop>.nil || send_res(dummy).(
 self(input_pat).[input_pat=stop] receive_res´<terminate>.nil))

5.2.2(d) Observing Behavior in π-calculus

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(foo(self))

 (substituting RHS of process foo(self))

Chapter 5. Mapping Tuples with Polyadic Communications

 73

=new self, send_res (self´<stop>.nil || send_res´<stop>.nil || send_res(dummy).(
 self(input_pat).[input_pat=stop] receive_res´<terminate>.nil))

(react on send_res, dummy reaction rule)
=>new self, send_res (self´<stop>.nil || nil || (self(input_pat).[input_pat=stop]
 receive_res´<terminate>.nil))

(react on self, input_pat is bound with stop)
=>new self, send_res (nil || nil || ([stop=stop] receive_res´<terminate>.nil))

A name matching [stop=stop] is found and consequently atom terminate is sent along
receive_res which is the same intention of the PIErlang Program 5.1(cf. Section
5.2.2(a)).

5.2.3 BIF self(): Used As Expression

The translation of self() would be different when it is used as an expression. In that
case, it is assumed that the value of self() will be passed through the so called result
channel res, the same way we have used in the translation mapping for variables,
atoms or numbers as expressions in Section 4.2.

TrPIexp(self, self()) := res´<TrPIarg(self())>.nil
 (22)

 = res´<self >.nil -(23)

5.2.4 PIErlang Program 5.2: self() as Expression

Let us consider the same program as of Program 5.1 where self() is used as an
expression as in the following way:

foo() ->
 MyID=self(),
 MyID ! stop,
 receive
 stop -> terminate
 end.

Program 5.2. A program that sends a message to itself and then terminates.

5.2.4(a) Execution in PIErlang Compiler

The execution behavior of Program 5.2 same as Program 5.1 described in Section
5.2.2(a). Only difference here is that self() is used as an expression. The value of self()
is first assigned to a variable MyID and the message stop sends to the process that has
its PID assigned to MyID.

Chapter 5. Mapping Tuples with Polyadic Communications

 74

5.2.4(b) Translation in the π-calculus

According to rule (21),

main() = new self(foo(self)) (as Program 5.1)

Here self is a global name within this π-calculus system.

TrPIfundef (self, foo() ->
 MyID=self(),
 MyID ! stop,
 receive
 stop -> terminate
 end.)

 (20A)
 =foo(self)= TrPIexp(self,
 MyID=self(),
 MyID ! stop,
 receive
 stop -> terminate
 end.)

(8, new name assn_res is added for assignment expression)
=new assn_res (TrPIexp(self, self()) || assn_res(MyID).(TrPIexp(self,
 MyID ! stop,
 receive
 stop -> terminate
 end.)))

(23) (13, new name send_res is added)
=new assn_res, send_res(assn_res´<self>.nil|| assn_res(MyID).(TrPIexp(self,
 MyID ! stop) || send_res(dummy).(TrPIexp(self,
 receive
 stop -> terminate
 end.))))
((9) -> (5) (3)) & ((15) -> (3))
=new assn_res, send_res(assn_res´<self>.nil|| assn_res(MyID).(MyID´<stop>.nil ||
 sene_res´<stop>.nil || send_res(dummy).(self(input_pat).[input_pat=stop]
 TrPIexp(self, terminate))))

(4, new result channel receive_res is added to send result of the receiver)
=new assn_res, send_res, receive_res(assn_res´<self>.nil|| assn_res(MyID).(

Chapter 5. Mapping Tuples with Polyadic Communications

 75

 MyID´<stop>.nil || sene_res´<stop>.nil || send_res(dummy).(
 self(input_pat).[input_pat=stop] receive_res´<terminate>.nil)))

5.2.4(c) The π-Model

From Section 5.2.4(b), the π-model of Program 5.2 can be written as follows:

main() = new self(foo(self))

foo(self)= new assn_res, send_res, receive_res(assn_res´<self>.nil|| assn_res(MyID).(
 MyID´<stop>.nil || sene_res´<stop>.nil || send_res(dummy).(
 self(input_pat).[input_pat=stop] receive_res´<terminate>.nil)))

5.2.4(d) Observing Behavior in π-calculus

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(foo(self))

(substituting RHS of process foo(self))
=new self, assn_res, send_res, receive_res(assn_res´<self>.nil|| assn_res(MyID).(
 MyID´<stop>.nil || sene_res´<stop>.nil || send_res(dummy).(
 self(input_pat).[input_pat=stop] receive_res´<terminate>.nil)))

(react on assn_res, this communication binds MyID with self)
=>new self, assn_res, send_res, receive_res(nil|| (self´<stop>.nil || sene_res´<stop>.nil
 || send_res(dummy).(self(input_pat).[input_pat=stop] receive_res´<terminate>.nil)))

=>(cf. 5.2.2(d) Observing behavior in the π-calculus)

Program 5.2 is interesting mainly for two reasons. First reason is that we have
presented here how self() could be used as an expression. We have also tried to
present the similarities between the self used as translation function parameter and self
used as expression. It has been found that both are actually expressing the same thing,
the current process identifier of the process executing the expression or function.
Another reason behind using this example is to show how 3 different types of
expressions (assignment, send and receive) are evaluated sequentially during the
translation mapping.

5.3 Tuples as Expression

Chapter 5. Mapping Tuples with Polyadic Communications

 76

Second extension to PIErlang-01 is the uses of tuple as an expression. We found that
tuples are not translated uniformly. Tuples are control structure for grouping variables
and values and therefore, an intrinsic part of the expressions in which they are used.
According to our added tuple syntax only numbers, atoms or variables could be used
as tuple elements. We have found that we could use the Polyadic π-calculus to
evaluate such tuple expression as follows:

TrPIexp(self, {A1, A2,.., An})= res´< TrPIarg(A1), .., TrPIarg(An)> .nil -(24)

Here it has been seen that tuple elements are translated using the TrPIarg function and
are sent as names along the so called res channel in polyadic form.

5.4 Tuples in Send Expression: PID as Implicit Mailbox

Our third addition to PIErlang-01 is the uses of tuples as a message in send
expression. The added send expression syntax is A ! {A1,…,An }. From this syntax, it
is clear that our new send expression can send a non-nested tuple of number(s),
atom(s), variable(s) and self() as message to a process’s mailbox, which has a PID
identified by A.

We have also found that Polyadic π-calculus could be used to model such tuple-based
send expression as follows:

TrPIexp(self, A !{A1, A2,.., An})=(TrPIarg(A))´ < TrPIarg(A1), …., TrPIarg(An)>.nil
 || res´ < TrPIarg(A1), .., TrPIarg(An)> .nil -(25)

Translation of such a send expression has introduced two subprocesses working in
parallel; one is a direct mapping of the send expression in the Polyadic π-calculus and
another sends the message {A1,…,An } to the res channel so that any other process
waiting for a message along res channel can receive the message {A1,…,An } with a
receive expression along res. In this way, the message is sent to the specific process
identified by the PID A and through the res channel. Of course, it is required to call
the TrPIarg() function to have a corresponding π-calculus translation of the elements
of the tuple message of the send expression.

Let us consider the following example,

DestPid ! {dowork, Take_rest, 5, self()}

In Erlang, this send expression means that a tuple of atom dowork, variable Take_rest
number 5 and the process identifier of the current process self() are sent to the
mailbox of the process identified by the PID stored in the variable DestPid.

Chapter 5. Mapping Tuples with Polyadic Communications

 77

Using rule (25), we can obtain a corresponding Polyadic π-calculus representation of
the above expression as follows:

TrPIexp(self, DestPid ! {dowork, Take_rest, 5, self()})

(25)
:= ((TrPIarg(DestPid))´ < TrPIarg(dowork), TrPIarg(Take_rest), TrPIarg(5),
 TrPIarg(self())>.nil || res´< TrPIarg(dowork), TrPIarg(Take_rest), TrPIarg(5),
 TrPIarg(self())>.nil)

(5) (3) (1) & (22)
= DestPid´<dowork, Take_rest, unknown, self>.nil
 || res´<dowork, Take_rest, unknown, self>.nil

Here in the Polyadic π-calculus representation, it is seen that the argument translations
of atom dowork, variable Take_rest, number 5 and PID self() are sent as names along
the channel DestPid and res. In this way, channel DestPid is used as an implicit
mailbox of a process whose PID is DestPid. A detailed discussion can be found about
modelling PID as the implicit mailbox in Sections 4.4 and 4.7.

5.5 Tuples in Receive Expression: PID as Implicit Mailbox

We have discussed the sending a tuple of message to the destination process by
considering the PID of the process to which the message is sent as the channel along
which the message is to be sent. In this way, any process can receive the message
along the channel that resembles its PID.

5.5.1 Receive Action in Polyadic π-calculus

Let us consider the example of Section 5.4. Here message {dowork, Take_rest, 5,
self()}is sent to a process whose PID is DestPid. We have done this by sending the
message along channel DestPid in Polyadic π-calculus. Now consider, this process
with PID DestPid intends to receive that message and after receiving that message let
us consider, it would be subprocess Q. This receiving scenario can be represented in
Polyadic π-calculus as follows:

DestPid(input_pat1, input_pat2, input_pat3, input_pat4).Q

Here bound names input_pat1, input_pat2, input_pat3 and input_pat4 will be bound
to Q with the corresponding receiving elements along channel DestPid. With the react
rule of π-calculus, we can represent this scenario. We consider that the final translated

Chapter 5. Mapping Tuples with Polyadic Communications

 78

result of the example of Section 5.4 and current receiving process work in parallel,
which can be formally written as follows:

 DestPid´<dowork, Take_rest, unknown, self>.nil || res´<dowork,
 Take_rest, unknown, self>.nil || DestPid(input_pat1, input_pat2, input_pat3,
 input_pat4).Q

(react on DestPid)
=>nil || res´<dowork, Take_rest, unknown, self>.nil || Q[input_pat1/dowork,
 input_pat2/Take_rest, input_pat3/unknown, input_pat4/self,]

Process Q will now behave with the sent message along DestPid. In Section 5.4, we
have implicitly modelled the mailbox of Erlang by considering the PID of a process as
the mailbox of the process to which the intended message is sent. We have done this
in π-calculus by considering the PID as the channel and sending the intended message
along that channel. Here (Section 5.5.1), the sent message is received along the same
channel name(PID of the process) and thus modelling mailbox implicitly. A detailed
discussion can be found about modelling PID as the implicit mailbox in Sections 4.4
and 4.7.

5.5.2 Matches of Receive Expression

Until now, we have discussed so far the sending and basic receiving mechanism of
PIErlang in Polyadic π-calculus perspective. The sending of message discussed in
Section 5.4 is sound enough to meet the presented send expression. The receiving
mechanism in PIErlang-01 can be described more generally as follows:

Let us consider an arbitrary receive expression that could be written in PIErlang-01.

 receive
 {P1, P2, ..,P10}-> Body1;
 {P11, P12}-> Body2;
 P13-> Body3;
 {P14, P15, P16}-> Body4
 end

In this receive expression, the patterns of the matches are either variable length tuples
or a single pattern. Whatever the patterns could be this receive expression resembles
the general syntax of receive expression of PIErlang-00 syntax,

receive

Chapter 5. Mapping Tuples with Polyadic Communications

 79

 Pattern1 -> Body1;
 ...;
 PatternN -> BodyN
end

For this general receive syntax we have already presented translation mapping rule
(14). We will use rule(14) for translation mapping of the proposed tuple-based receive
expression too. Using rule(14),

TrPIexp(self,

 receive
 {P1, P2, .., P10}-> Body1;
 {P11, P12}-> Body2;

 P13-> Body3;
 {P14, P15, P16}-> Body4

 end)

(14)
:=TrPImatch(self, {P1, P2, .., P10}-> Body1) + TrPImatch(self, {P11, P12}-> Body2) +
 TrPImatch(self, P13-> Body3) + TrPImatch(self, {P14, P15, P16}-> Body4)

We will consider that TrPImatch will now capable of handling tuple of patterns in the
Matches of receive expression.

5.5.3 Matches

We have already discussed the intention behind rule(14) in section 4.7. We have also
discussed about the translation mapping of matches of single pattern match using
rules (15) (16) & (17A) in Section 4.7 where the potential received messages could be
a number, an atom or a variable. In this section, the intention is to use the tuples of
number(s), atom(s), variable(s) and/or self() as the message of the send expression (cf.
Section 5.4) in receive expression. According to the presented send expression (cf.
section 5.4), a match in the receive expression should be {P1,…,Pn} -> E where
P1,…Pn could be a number, an atom or a variable.

5.5.3(a) Matches: Atoms & Numbers as Elements of Tuple Message

We have already discussed how a tuple of message could implicitly be sent to the
mailbox of a process in Section 5.4 above. Now the intention is to receive the message
from the implicit mailbox (actually from a channel whose name is same as the PID of

Chapter 5. Mapping Tuples with Polyadic Communications

 80

the receiver process) of the process. We have discussed how a tuple of message can
be received along a channel using Polyadic π-calculus in Section 5.5.1. One important
issue left to discuss is matching of the received message(s) against the patterns. We
handle this pattern matching for a match of tuple pattern using the name matching
feature of Polyadic π-calculus. We can receive the tuple of message(s) using the
receive statement translation rule in Polyadic π-calculus along a channel (say self)
where the message elements will be bound to the corresponding input names and then
applying the name matching feature on the bound names against the corresponding
patterns of the receive statement. Of course, we have to use TrPIarg to get a
corresponding translation of the patterns(elements of tuple pattern) before applying
name matching. This general scenario can be formally presented as with the following
rule(26) for numbers and atoms as the elements of the tuple pattern:

TrPImatch(self, {P1,……,Pn} -> E)
= self(input_pat1,….., input_patn).[input_pat1=TrPIarg(P1)][input_pat2=
 TrPIarg(P2)]……. [input_patn= TrPIarg(Pn)]TrPIexp(self, E). -(26)

Where P1,…,Pn !{ Numbers, Atoms}.

5.5.3(b) Matches: Variables as Elements of Tuple Message

A variable can match with any term, therefore, no name matching is required for
variable(s) as pattern(s). In this way, if we have variable(s) in P1,..,Pn, we will omit
the name matching for that corresponding pattern. This variable pattern could be used
in the Body expression E where the corresponding received message is expected to be
substituted in place of the variable. Having this in mind, the substitution feature of the
π-calculus is used on the corresponding bound name(s). A detailed discussion can be
found in Section 4.7.2(c) using monadic π-calculus.

Let us consider that patterns P2 and P3 are variables (say X and Y) in the above rule
(26), then the corresponding translation formula would be as follows:

TrPImatch(self, {P1, X, Y,..,Pn} -> E)

 = self(input_pat1,….., input_patn).[input_pat1=TrPIarg(P1)][input_pat4=
 TrPIarg(P4)]……. [input_patn= TrPIarg(Pn)](TrPIexp(self, E)[X/input_pat2,
 Y/input_pat3])

Chapter 5. Mapping Tuples with Polyadic Communications

 81

Where [Z/input_pati] denotes the replacement of every free occurrence of Z in
translated E by input_pati.

A more simplified version can be obtained as follows:

TrPImatch(self, {P1, X, Y,..,Pn} -> E)

 = self(input_pat1, X, Y,….., input_patn).[input_pat1=TrPIarg(P1)][input_pat4=
 TrPIarg(P4)]……. [input_patn= TrPIarg(Pn)]TrPIexp(self, E)

Here it has been noticed that we have directly used the pattern variables X and Y in
the receive action and we have omitted the substitutions that we have done above for
variable patterns with corresponding bound names of the receive action. We have also
omitted the corresponding name matching where variable(s) is used as pattern(s).

We know a variable can be bound with any term, therefore, we used the same pattern
variable(s) as the bound name(s) in receive action. In this way, pattern variable(s) will
be bound with the corresponding received message(s). Now if this variable is used in
expression E, we will have no problem since we know a variable can be bound only
once and the pattern variable(s) has already been bound with the corresponding
message by the receive action. This general scenario can be formally represented with
rule(26A) which supports numbers, atoms and variables as pattern elements of the
tuple pattern:

We can now get the final translation for a tuple-based Match with rule (26A) by
combining all the cases of Pi where i!{1,..,n}.

5.5.4 PIErlang Program 5.3: CAR for DC

Let us consider the following simple example[31] written in PIErlang-01.

ping() ->
 Pong_ID = spawn(pong, []),

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIexp(self, E) ;
 if Pi∈{Atoms, Numbers}

 -(26A)
self(…,X,…)… TrPIexp(self, E) ; if Pi∈{ Variables}, where Pi is
 a variable X.

TrPImatch(self, {P1,…,Pn} -> E) =

Chapter 5. Mapping Tuples with Polyadic Communications

 82

 Pong_ID ! {self(), ping},
 receive
 pong -> pong
 end.

pong() ->
 receive
 {Ping_ID, ping} -> Ping_ID ! pong
 end.

Program 5.3 A simple ping-pong program.

5.5.4(a) Execution in PIErlang Compiler

Figure 5.2 Schematic diagram of Program 5.3

In Program 5.3 (or in Figure 5.2), there are two functions ping and pong where ping is
the starting function. Function ping has a spawn call function which initiates the
execution of the pong function (or we can say pong process) in parallel with ping
process. This spawn call also returns the PID (po_pid) of pong process in variable
Pong_ID. The 2nd line of ping process sends the atom ping along with its identify
(PID self) as a tuple of message to pong process.

Ping process also waits to receive an atom pong and if matching successful, it will
return the atom pong as well. Pong process (pong function) waits to receive a tuple of
message where the first element of the tuple is a variable and 2nd one is an atom ping.

self po_pid

ping() pong() spawn

self
{self, ping}

Ping_ID=self,

self
 pong

“pong”

po_pid

po_pid

Chapter 5. Mapping Tuples with Polyadic Communications

 83

As it is already mentioned a variable can be bound with any term, therefore, matching
of the receive would be successful if the 2nd element of the received message is an
atom ping. It has been already seen that ping process is willing to send a tuple of
message to pong process where the 2nd element of the message is an atom ping,
therefore, pattern matching will be successful and the pattern variable Ping_ID will be
bound with the sent message element self() where self() is the process identity of the
ping process. As a result, atom pong will be sent to the mailbox of the ping process,
which has been done here by the expression Ping_ID ! pong, where variable Ping_ID
contains the process identity of ping process. In this way, processes ping and pong
will communicate and execute in parallel by sending messages to each other.

5.5.4(b) Translation in the π-calculus

We will now translate Program 5.3 in Polyadic π-calculus and will verify whether it is
possible or not to get the same behavior in π-calculus as per Section 5.5.4(a).

According to rule (21), main()=new self (ping(self))

TrPIfundef(self, ping() ->
 Pong_ID = spawn(pong, []),

 Pong_ID ! {self(), ping},
 receive

 pong -> pong
 end.)

 (20A)->(11, we have considered po_pid as pong PID)
=ping(self)= new po_pid, p, pong_res(p´<po_pid>.nil || TrPIexp(po_pid, pong()) ||
 pong_res(dummy).nil || p(Pong_ID). (TrPIexp(self,

Pong_ID ! {self(), ping},
receive

 pong -> pong
 end.)))

 (10A) (13, new name pong_send_res is added)
= new po_pid, p, pong_res, pong_send_res (p´<po_pid>.nil || pong(po_pid)||
 pong_res(dummy).nil || p(Pong_ID). (TrPIexp(self, Pong_ID ! {self(), ping}) ||
 pong_send_res(dummy). (TrPIexp(self receive

Chapter 5. Mapping Tuples with Polyadic Communications

 84

 pong -> pong
end.))))

((25) -> (5) (22) (3)) & ((15)->(4, new name ping_res is added))
= new po_pid, p, pong_res, pong_send_res, ping_res (p´<po_pid>.nil ||
 pong(po_pid)|| pong_res(dummy).nil || p(Pong_ID). (Pong_ID´<self, ping>.nil ||
 pong_send_res´<self, pong>.nil || pong_send_res(dummy). (
 self(input_pat).[input_pat=pong] ping_res´<pong>.nil)))

TrPIfundef(self, pong() ->
 receive
 {Ping_ID, ping} -> Ping_ID ! pong
 end.)

(20A)
=pong(self)=TrPIexp(self,

receive
 {Ping_ID, ping} -> Ping_ID ! pong
 end.)

 (26A)
=self(Ping_ID, input_pat).[input_pat=ping]TrPIexp(self, Ping_ID ! pong)

(9, pong_res is used to send final result of pong process, its already a name in the
whole system)->(5) (3)
= self(Ping_ID, input_pat).[input_pat=ping] (Ping_ID´<pong>.nil ||
 pong_res´<pong>.nil)

5.5.4(c) The π-Model

From Section 5.5.4(b), the π-model of Program 5.3 can be written as follows:

main()=new self (ping(self))

ping(self)= new po_pid, p, pong_res, pong_send_res, ping_res (p´<po_pid>.nil ||
 pong(po_pid) || pong_res(dummy).nil || p(Pong_ID). (Pong_ID´<self, ping>.nil ||
 pong_send_res´<self, pong>.nil || pong_send_res(dummy). (
 self(input_pat).[input_pat=pong] ping_res´<pong>.nil)))

Chapter 5. Mapping Tuples with Polyadic Communications

 85

pong(self)= self(Ping_ID, input_pat).[input_pat=ping] (Ping_ID´<pong>.nil ||
 pong_res´<pong>.nil)

5.5.4(d) Observing Behavior in π-calculus: CAR for DC Rule

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self (ping(self))

(substituting RHS of process ping(self))
=>new self, po_pid, p, pong_res, pong_send_res, ping_res (
 p´<po_pid>.nil || pong(po_pid) || pong_res(dummy).nil || p(Pong_ID).
 (Pong_ID´<self, ping>.nil || pong_send_res´<self, pong>.nil ||
 pong_send_res(dummy). (self(input_pat).[input_pat=pong] ping_res´<pong>.nil)))

PID of pong process(po_pid) is sent over channel p and at the same time another
process is ready to receive that PID along p and then binds with Pong_ID. In this way,
the PID of pong process is bound with Pong_ID.

(react on p, Pong_ID is now bound with pong PID, po_pid) -> (Omitting nil process)
=>new self, po_pid, p, pong_res, pong_send_res, ping_res (
 // Pong Process
 pong(po_pid) || pong_res(dummy).nil ||

 // Ping Process

 (po_pid´<self, ping>.nil || pong_send_res´<self, pong>.nil ||
 pong_send_res(dummy). (self(input_pat).[input_pat=pong] ping_res´<pong>.nil)))

Tuple of message {self, ping} is sent over channel po_pid but there is no process to
receive this message. In the same time, ping process can receive a message along self
channel to have a pattern matching with the received message but no one sends
message over self channel. However, pong(self) process call can be instantiated with
its PID po_pid as follows:

(Substituting RHS definition of pong(self) with self -> po_pid)
=>new self, po_pid, p, pong_res, pong_send_res, ping_res (
 // Pong Process
 po_pid(Ping_ID, input_pat).[input_pat=ping] (Ping_ID´<pong>.nil ||
 pong_res´<pong>.nil) || pong_res(dummy).nil ||

Chapter 5. Mapping Tuples with Polyadic Communications

 86

 // Ping Process

 (po_pid´<self, ping>.nil || pong_send_res´<self, pong>.nil ||
 pong_send_res(dummy). (self(input_pat).[input_pat=pong] ping_res´<pong>.nil)))

At that moment, tuple of message {self, ping} is sent along po_pid and there is also a
receiver subprocess along po_pid in ping process, thereby with the react rule of π-
calculus tuple of message can be received and in this way Ping_ID will be bound with
self and input_pat with ping.

(react on po_pid)
=>new self, po_pid, p, pong_res, pong_send_res, ping_res (
 // Pong Process
 [ping=ping] (self´<pong>.nil || pong_res´<pong>.nil) || pong_res(dummy).nil ||

 // Ping Process

 (nil || pong_send_res´<self, pong>.nil || pong_send_res(dummy). (
 self(input_pat).[input_pat=pong] ping_res´<pong>.nil)))

After applying reaction rule on po_pid, input_pat has been replaced with ping and
Ping_ID with self and consequently, a name matching [ping=ping] is found. As name
matching is successful, atom pong is sent over channel self. The same behavior is
found from the Program 5.3 in Section 5.5.4(a). In Program 5.3, as soon as ping
process receives a tuple of message {Ping_ID, ping}, its pattern matching will be
successful and atom pong will be sent to the process whose PID is Ping_ID. Ping_ID
will be bound with a PID during pattern matching. Now lets see whether we can get
the same behavior here or not.

In the system state above, it has been found that although atom pong is sent (by pong
process) along channel self (ping process) as a result of successful name matching
[ping=ping], there is no direct process that can receive that atom pong along self
channel. However, we have found that there is one process (here ping process) has the
possibility of receiving something along self channel but before doing so, it has to
perform a dummy receive operation along pong_send_res. This dummy receive action
confirms that ping process(here PID self) will not receive anything until it can send
the tuple of message {self, ping} to pong process, thereby maintaining the sequence
of evaluating the expressions (send and receive expressions in ping process). This
dummy receive action also indicates that pong process will receive the tuple of
message {self, ping} and then it will send an atom pong to ping process. Ping process

Chapter 5. Mapping Tuples with Polyadic Communications

 87

can only receive atom pong when pong process sent it along self. In this way, the
execution mechanism of PIErlang programs are implemented in π-calculus translated
models too.

We can apply react rule along channel pong_send_res. But there is still some
confusion due to the mixing of Polyadic and Monadic π-calculus while translating the
PIErlang code. The code segment related to channel pong_send_res is:

pong_send_res´<self, pong>.nil || pong_send_res(dummy). (
 self(input_pat).[input_pat=pong] ping_res´<pong>.nil)

The sender side sends a tuple of size 2 but the receiving process can only receive an
atomic message. As a result, there will be run time error in π-calculus system
execution. We have tried to solve this problem by considering that whenever a
message is sent over a certain channel and there is another process ready to receive
message over the same channel for dummy communications, we will suppose that
receiver channel has the same semantic meaning as the sender one and we will change
our receiver channel semantic accordingly. Thus, in the example code above, we will
change the receiver channel semantic to adapt it with the sender channel semantic as
follows by replacing monadic input action with polyadic one:

pong_send_res´<self, pong>.nil || pong_send_res(dummy1, dummy2). (
 self(input_pat).[input_pat=pong] ping_res´<pong>.nil)

The sender side channel, pong_send_res sends a tuple of size 2, therefore, the receiver
channel semantic should be changed in such a way that it can receive a tuple of size 2
also. To meet this goal, we have changed the receiver side channel semantic from
Monadic π-calculus to Polyadic π-calculus, thus enabling it to receive a tuple of size
2. We call this π-calculus rule as Channel Adaptation Rule for Dummy
Communications (CAR for DC). This rule will not be applicable to other normal
communication(s). Here is a formal representation of CAR for DC:

Chapter 5. Mapping Tuples with Polyadic Communications

 88

res´<name1, name2, …, namen>.nil || res(dummy).R

(CAR for DC on res)
 =>res´<name1, name2, …, namen>.nil || res(dummy1, dummy2,…., dummyn).R

(react on res)
=>nil || R

Thereby, we can apply rule (CAR for DC) on the above π-calculus system as follows:

 (CAR for DC on pong_send_res)
=>new self, po_pid, p, pong_res, pong_send_res, ping_res (
 // Pong Process
 [ping=ping] (self´<pong>.nil || pong_res´<pong>.nil) || pong_res(dummy).nil ||

 // Ping Process

 (nil || pong_send_res´<self, pong>.nil || pong_send_res(dummy1, dummy2). (
 self(input_pat).[input_pat=pong] ping_res´<pong>.nil)))

(react on pong_send_res, dummy communication to maintain sequence of execution
as in PIErlang semantic)
=>new self, po_pid, p, pong_res, pong_send_res, ping_res (
 // Pong Process
 [ping=ping] (self´<pong>.nil || pong_res´<pong>.nil) || pong_res(dummy).nil ||

 // Ping Process

 (nil || nil || (self(input_pat).[input_pat=pong] ping_res´<pong>.nil)))

Now there is a possibility of communication along channel self.

(react on self, input_pat is bound with atom pong)
=>new self, po_pid, p, pong_res, pong_send_res, ping_res (
 // Pong Process
 (nil || pong_res´<pong>.nil) || pong_res(dummy).nil ||

 // Ping Process

 (nil || nil || ([pong=pong] ping_res´<pong>.nil)))

As a result of this communication, a name matching [pong=pong] is successful and
consequently, atom pong is now sent along ping_res channel meeting the PIErlang
behavior according to our expectation described in Section 5.5.4(a).

Chapter 5. Mapping Tuples with Polyadic Communications

 89

5.5.5 PIErlang Program 5.4: Variables as Tuple Elements

Let us consider a simple echo process [1] where both the pattern in the receive
expression are variables.

start() ->
 Loop_Pid=spawn(loop, []),
 Loop_Pid ! {self(), hello}.

loop() ->
 receive
 {From, Message} ->
 From ! Message,
 loop()
 end.

Program 5.4 A simple echo process

5.5.5(a) Execution in PIErlang Compiler

The execution mechanism of this simple echo process is shown as schematic diagram
in Figure 5.3.

self lpid

start() loop() spawn

self lpid
{self, hello}

From=self,
Message=hello

self lpid
 Message

“hello”

Figure 5.3 Schematic diagram of the simple echo process of Program 5.4.

lpid self
Can receive further message

Chapter 5. Mapping Tuples with Polyadic Communications

 90

Here start process with PID self invokes a spawn call for loop process with process
identifier lpid. At the same time, start process sends the tuple of message {self, hello}
to the loop process. In loop process both patterns are variables and hence are matched
with the sent message. In this way, variables From and Message are bound with self
and hello respectively. Consequently, atom hello is sent back to the start process.
Loop process can be also restarted again to receive further message(s).

5.5.5(b) Translation in the π-calculus

According to rule (21),

main()=new self(start(self))

TrPIfundef(self, start() ->
 Loop_Pid=spawn(loop, []),
 Loop_Pid ! {self(), hello})

(20A)->(11)->(25) (10A) (22) (5) (3)
=start(self) = new lpid, p, loop_res, start_send_res(p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid).(Loop_Pid´<self, hello>.nil ||
 start_send_res´<self, hello>.nil))

TrPIfundef(self, loop() ->
 receive
 {From, Message} ->
 From ! Message,
 loop()
 end.)

 (20A) ->(26A)->(13)
=loop(self) = new loop_send_res (self(From, Message). (TrPIexp(self, From !
 Messge) || loop_send_res(dummy).TrPIexp(self, loop())))

(9) ->(5) (10A)
 = new loop_send_res (self(From, Message). (From´<Message>.nil ||
 loop_send_res´<Message>.nil || loop_send_res(dummy). loop(self)))

Chapter 5. Mapping Tuples with Polyadic Communications

 91

5.5.5(c) The π-Model

From Section 5.5.5(b), the π-model of Program 5.4 can be written as follows:

main()=new self(start(self))

start(self) = new lpid, p, loop_res, start_send_res(p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid).(Loop_Pid´<self, hello>.nil ||
 start_send_res´<self, hello>.nil))

loop(self) = new loop_send_res (self(From, Message). (From´<Message>.nil ||
 loop_send_res´<Message>.nil || loop_send_res(dummy). loop(self)))

5.5.5(d) Observing Behavior in π-calculus

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(start(self))

(substituting RHS of process start(self))
=>new self, lpid, p, loop_res, start_send_res(
 p´<lpid>.nil || loop(lpid) || loop_res(dummy).nil || p(Loop_Pid).(
 Loop_Pid´<self, hello>.nil || start_send_res´<self, hello>.nil))

(react on p, Loop_Pid is now bound with lpid) ->(Omitting nil process)
=>new self, lpid, p, loop_res, start_send_res(
 // loop process
 loop(lpid) || loop_res(dummy).nil ||
 // start process
 (lpid´<self, hello>.nil || start_send_res´<self, hello>.nil))

(substituting RHS of process loop(self) with lpid as parameter i.e. self -> lpid)
=>new self, lpid, p, loop_res, start_send_res, loop_send_res (
 // loop process
 (lpid(From, Message). (From´<Message>.nil ||
 loop_send_res´<Message>.nil || loop_send_res(dummy).loop(lpid)))
 || loop_res(dummy).nil ||
 // start process
 (lpid´<self, hello>.nil || start_send_res´<self, hello>.nil))

Chapter 5. Mapping Tuples with Polyadic Communications

 92

(react on lpid, From is bound with self and Message is with hello)
=>new self, lpid, p, loop_res, start_send_res, loop_send_res (
 // loop process
 ((self´<hello>.nil || loop_send_res´<hello>.nil || loop_send_res(dummy).
 loop(lpid))) || loop_res(dummy).nil ||
 // start process
 (nil || start_send_res´<self, hello>.nil))

Now it is clear that message hello is again sent back to the start process. It has been
done here by self´<hello>.nil. We know PID of start process is self. Therefore, start
process can receive message hello with a receive action along channel self.

However, there is also a possibility for the loop process to be initiated again to receive
further message(s), which is done here with loop(lpid). But it is required to perform a
dummy communications on channel loop_send_res before doing so. The purpose of
this dummy communication is to force the loop process to start a new session after
sending the received message to the sender (here start process), thus maintaining the
sequence of execution as Figure 5.3(cf. Section 5.5.5(a)).

(react on loop_send_res)
=>new self, lpid, p, loop_res, start_send_res, loop_send_res (
 // loop process
 ((self´<hello>.nil || nil || loop(lpid))) || loop_res(dummy).nil ||
 // start process
 (nil || start_send_res´<self, hello>.nil))

It is now possible to start a new session of message receiving by the loop process with
loop(lpid) which semantically same as Program 5.4 or in Figure 5.3.

5.5.6 PIErlang Program 5.5: Inaccuracy of Rule (26A)

Until now, rule (26A) is found correct. In this section, the accuracy of rule(26A) is
investigated and found that it is not a sufficient rule for handling variable patterns in
receive statement Matches.

Let us consider Program 5.5 which is also an echo process[1] with some additional
code segments. Here start process(start function) creates a simple echo process (loop
process) which returns any message sent to it. The expression spawn(loop, []) causes
the function loop() (loop process) to be evaluated in parallel with the calling function
start() (start process).

Chapter 5. Mapping Tuples with Polyadic Communications

 93

start() ->
 Loop_Pid = spawn(loop, []),
 Loop_Pid ! {self(), hello},
 receive
 { Loop_Pid, Msg} -> Msg
 end,
 Loop_Pid ! stop.

loop() ->
 receive
 {Main_Pid, Msg} ->
 Main_Pid ! {self(), Msg},
 loop();
 stop ->
 true
 end.

Program 5.5 An echo process

5.5.6(a) Execution in PIErlang Compiler

self lpid

start() loop() spawn

self lpid
{self, hello}

Main_Pid=self,
Msg=hello

self lpid
 {lpid, hello}

“hello”

self lpid
 stop

Figure 5.4 Schematic diagram of the echo process of Program 5.5

………..

 “true”

Chapter 5. Mapping Tuples with Polyadic Communications

 94

In Figure 5.4, it is shown that for the spawn function, processes start and loop are
working in parallel. While they are executed in parallel, communications between
them are described with the label graph(s).It is clear that start process sends a tuple of
messge {self, hellp}, its PID self and an atom hello to the loop process (its PID is
lpid). Upon reception of such a tuple of message from the start process, loop process
sends back the same message(here hello) to the start process along with its process
identifier lpid. Start process finally sends a message stop to the loop process.

Loop process can receive further message(s) from start process or can receive
message true and thereby, terminates execution.

5.5.6(b) Translation in the π-calculus

According to rule(21),
main()=new self(start(self))

TrPIexp(self, start() ->
 Loop_Pid = spawn(loop, []),
 Loop_Pid ! {self(), hello},
 receive
 { Loop_Pid, Msg} -> Msg
 end,
 Loop_Pid ! stop.)

(20A) ->(11) ->(13)->(25)->(26A)->(17A) (only major rules are marked in sequence)
=start(self)=new lpid, p, loop_res, start_send1_res, start_receive_res, start_send2_res
(p´<lpid>.nil || loop(lpid) ||loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self,
hello>.nil || start_send1_res´<self, hello>.nil || start_send1_res(dummy).(
self(Loop_Pid, Msg).start_receive_res´<Msg>.nil || start_receive_res(dummy). (
Loop_Pid´<stop>.nil || start_send2_res´<stop>.nil))))

TrPIexp(self, loop() ->
 receive
 {Main_Pid, Msg} ->
 Main_Pid ! {self(), Msg},
 loop();
 stop ->
 true
 end.)

Chapter 5. Mapping Tuples with Polyadic Communications

 95

(20A) ->(14)->26A) ->(13) -> (25) -> (15) (only major rules are marked in sequence,
loop_res is restricted to the whole system)
=loop(self)=self(Main_Pid, Msg).(Main_Pid´<self, Msg>.nil || loop_send_res´<self,
Msg>.nil || loop_send_res(dummy). loop(self)) + self(input_pat).[input_pat=stop]
loop_res´<true>.nil

5.5.6(c) The π-Model

From Section 5.5.6(b), the π-model of Program 5.5 can be written as follows:

main()=new self(start(self))

start(self)=new lpid, p, loop_res, start_send1_res, start_receive_res, start_send2_res
(p´<lpid>.nil || loop(lpid) ||loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self,
hello>.nil || start_send1_res´<self, hello>.nil || start_send1_res(dummy).(
self(Loop_Pid, Msg).start_receive_res´<Msg>.nil || start_receive_res(dummy). (
Loop_Pid´<stop>.nil || start_send2_res´<stop>.nil))))

loop(self)=self(Main_Pid, Msg).(Main_Pid´<self, Msg>.nil || loop_send_res´<self,
Msg>.nil || loop_send_res(dummy). loop(self)) + self(input_pat).[input_pat=stop]
loop_res´<true>.nil

5.5.6(d) Observing Behavior in π-calculus: Rule (26A) is Insufficient

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(start(self))

 (substituting RHS of process start(self))
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, start_send2_res (
p´<lpid>.nil || loop(lpid) || loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self,
hello>.nil || start_send1_res´<self, hello>.nil || start_send1_res(dummy).(
self(Loop_Pid, Msg).start_receive_res´<Msg>.nil || start_receive_res(dummy). (
Loop_Pid´<stop>.nil || start_send2_res´<stop>.nil))))

 (react on p) ->(Omitting nil process)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, start_send2_res (
loop(lpid) ||loop_res(dummy).nil || (lpid´<self, hello>.nil || start_send1_res´<self,
hello>.nil || start_send1_res(dummy).(self(Loop_Pid, Msg).
start_receive_res´<Msg>.nil || start_receive_res(dummy). (lpid´<stop>.nil ||
start_send2_res´<stop>.nil))))

Chapter 5. Mapping Tuples with Polyadic Communications

 96

As a result of react rule on p, every free occurrences of Loop_Pid will be replaced by
lpid. One occurrence of Loop_Pid is bound with a receive action along self. As this
occurrence is bound with self, while react on self, any name can be received in
Loop_Pid along self which breaks the semantics of its correesponding Erlang Program
5.5. Since Loop_Pid is already bound with a value before used in receive expression
match pattern, it cannot be bound 2nd time. But in translated π-model (with rule
(26A)), Loop_Pid can be further bound with any received term along channel self
which obviously breaks the semantics of Erlang.

 We also know that in π-calculus two process expressions are structurally congruent,
if one can be transformed into the other by renaming of bound names. As Loop_Pid
is bound in the above process expression, we can apply renaming rules on it.

(renaming of bound name Loop_Pid to Input)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, start_send2_res (
loop(lpid) ||loop_res(dummy).nil || (lpid´<self, hello>.nil || start_send1_res´<self,
hello>.nil || start_send1_res(dummy).(self(Input, Msg). start_receive_res´<Msg>.nil
|| start_receive_res(dummy). (lpid´<stop>.nil || start_send2_res´<stop>.nil))))

Now it is clear that we are in wrong path in translation mapping as there is no
existence of this occurrence of Loop_Pid any more where it is supposed to be the PID
of loop process, lpid in pattern matching. Thereby, an improvement of rule (26A) is
required(cf. Section 5.5.7).

5.5.7 An Approach to Improve Rule (26A)

First, let us consider the first two lines of the start() function of Program 5.5.

 Loop_Pid = spawn(loop, []),
 Loop_Pid ! {self(), hello},

The spawn call of the first line of the code causes the loop process(loop function) to
be started in parallel with calling function (here start process) and at the same time,
process identity of the loop process is assigned to variable Loop_Pid and tuple of
message {self(), hello} is sent to the loop process. It has been done by the 2nd line of
the code above as PID of the loop process is assigned in variable Loop_Pid and the
tuple of message is sent to that process whose ID is stored in Loop_Pid.

A variable can be bound only once in PIErlang. A variable which value has been
assigned is said to be bound, otherwise, it is said to be unbound. Once a variable has
been bound its value can never be changed and and we want to keep this also in π-

Chapter 5. Mapping Tuples with Polyadic Communications

 97

calculus semantics. In this Program 5.5, we see that variable Loop_Pid has been
assigned the process identifier of the loop process and the same variable is used as
pattern in the receive statement within the same function start()(lines 4 of the start
function).

While translating the receive statement,

 receive
 {Loop_Pid, Msg} -> Msg
 end

using rule (26A), this variable Loop_Pid will be considered as an unbound variable. In
rule (26A), we have considered that any variable as a pattern of receive statement will
be treated as an unbound variable and could be matched with any received message.

In PIErlang, a bound variable is always considered as bound which implies Loop_Pid
is bound here too since it has already assigned a value with the assignment expression
Loop_Pid = spawn(loop, []). The tuple of pattern {Loop_Pid, Msg} in the receive
statement expects to receive a tuple of size 2 where first element of the tuple is the
PID of the loop process and this PID will be used for pattern matching. This is
because, variable Loop_Pid within this tuple pattern is already bound with the PID of
the loop process. This is not the same for case of the 2nd element of the tuple pattern.
Here variable Msg is still unbound within this start function(start process) and rule
(26A) will be sufficient to handle this variable pattern.

5.5.7(a) Modification of Rule (26A): Providing Bound Variable Set

To meet the semantics of PIErlang in translated π-calculus system, we have
considered that a bound variable has the same nature as an atom when it is used as a
pattern in the receive statement. Therefore, we have changed rule(26A) with an
additional information for a variable, whether it is bound or unbound. If the variable
is already bound before used as pattern in the receive statement within the same
function, we will treat that variable as an atom and will follow the translation
procedure for an atom(cf. rule (26A)). If it is unbound then same treatment will be
followed as in rule (26A). The modified version of rule (26A) is given below:

Chapter 5. Mapping Tuples with Polyadic Communications

 98

5.5.7(b) Modification of Rule (26B): Providing Bound Name Set(BNS)

While working with rule (26B), we have faced the problem of separating bound and
unbound variables. We have found that we can overcome this problem in the
following two ways:

i. We can pick out the sets of bound and unbound variables of the whole
PIErlang function before start translation mapping and we can use this sets
while translating a variable within this function especially when a variable is
used as a pattern in the receive statement match. It has to be noticed that each
function definition has to be dealt separately while translating. Rule (26B) is
based on this concept of checking bound and unbound variables. However, it
would be a tedious works to find the bound and unbound sets of variables for
a large complex PIErlang function definition.

ii. It is possible to handle this problem of bound and unbound variables during
translation mapping. In that case, we will maintain a set of the bound
names(cf. Chapter 2) while translation mapping. When a variable is used for
translation, we have to check whether there is a name with the same spelling
and context of the variable in the Bound Name Set(BNS). If there is already a
name same as the variable in BNS, we have considered that this variable is
already bound with some values and we cannot used this variable as an
unbound variable in receive expression match. Rule (26B) has been modified
to meet this concept of handing bound and unbound variables with rule(26C)
as follows:

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIexp(self, E) ;
 if Pi∈{Atoms, Numbers, Bound Variables}

 -(26B)
self(…,X,…)… TrPIexp(self, E) ; if Pi∈{Unbound Variables}, where Pi is a
 unbound variable X.

TrPImatch(self, {P1,…,Pn} -> E) =

Chapter 5. Mapping Tuples with Polyadic Communications

 99

5.5.7(c) Betterment of Rule (26C) over Rule(26B)

First, consider only the receive statement code segment:

 start()->
 receive
 {Loop_Pid, Msg} -> Msg
 end
 …..

Here both pattern variables Loop_Pid and Msg are unbound variables. Rule (26B) can
be used here as we know in advanced that pattern variables are unbound. But consider
the case of very large program where each function could be also very large. In the
case of large code within a function, finding the bound and unbound variables would
be tedious and time consuming. To overcome this problem, we have considered rule
(26C). With rule(26C), whenever a variable is found as pattern of the receive
statement during translation mapping, the translator will search in BNS whether with
the same spelling as the variable, there is a name or not. While translating a complete
PIErlang program, we will consider separate BNSs for each of the function definition
to keep both the semantics of PIErlang and π-calculus. Thus, while using rule(26C)
for the above code segment, it will directly say that both the pattern variables
Loop_Pid and Msg are not elements of BNS since initially BNS is empty.

Using rule (26C),

TrPIexp(self,
 receive
 {Loop_Pid, Msg} -> Msg
 end)
(26C)
=self(Loop_Pid, Msg).TrPIexp(self, Msg)

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIexp(self, E) ;
if Pi∈{Atoms, Numbers} or if Pi∈{Variables} and name Pi∈BNS
 -(26C)
self(…,X,…)… TrPIexp(self, E) ; if Pi∈{Variables}, where Pi is a
variable X and name X∉BNS

TrPImatch(self, {P1,……,Pn} -> E) =

Where BNS ={ X | y(..,X,..) is a receive action in π-calculus
 , z | (new z) in π-Calculus }

Chapter 5. Mapping Tuples with Polyadic Communications

 100

The translation result implies that if any message of tuple size 2 is sent along channel
self, the corresponding message elements will be received in names Loop_Pid and
Msg.

5.5.8 PIErlang Program 5.5: Rule (26C) is Sound but has Extra Names in BNS

In this section rule (26C) is used for translating Program 5.5 and found that this rule is
sound enough to translate tuple-based Match of receive expression. It is also noticed
that the BNS set of this rule contains some extra names(cf. Section 5.5.9).

5.5.8(a) Execution in PIErlang Compiler

Execution of Program 5.5 in PIErlang compiler can be found in Section 5.5.6(a).

5.5.8(b) Translation in the π-calculus

According to rule(21),
main()=new self(start(self))

Using rule (26C), the start function of Program 5.5 can be translated as follows:

TrPIfundef(self, start() ->
 Loop_Pid = spawn(loop, []),
 Loop_Pid ! {self(), hello},
 receive
 { Loop_Pid, Msg} -> Msg
 end,
 Loop_Pid ! stop.)

Initially, BNS is empty i.e. BNS={ }

(20A) -> (11)->(10A)
=start(self)=new lpid, p, loop_res (p´<lpid>.nil || loop(lpid) || loop_res(dummy).nil ||
 p(Loop_Pid). (TrPIexp(self,
 Loop_Pid ! {self(), hello},
 receive
 { Loop_Pid, Msg} -> Msg
 end,
 Loop_Pid ! stop.)))

Now BNS={lpid, p, loop_res, dummy, Loop_Pid}

Chapter 5. Mapping Tuples with Polyadic Communications

 101

(13) -> (25) ->(5) (22) (3)
=new lpid, p, loop_res, start_send1_res (p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self, hello>.nil ||
 start_send1_res´<self, hello>.nil || start_send1_res(dummy).
 (TrPIexp(self,
 receive
 { Loop_Pid, Msg} -> Msg
 end,
 Loop_Pid ! stop.))))

Now BNS={lpid, p, loop_res, dummy, Loop_Pid, start_send1_res}

(13)
=new lpid, p, loop_res, start_send1_res, start_receive_res (p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self, hello>.nil ||
 start_send1_res´<self, hello>.nil || start_send1_res(dummy).
 (TrPIexp(self,
 receive
 { Loop_Pid, Msg} -> Msg
 end)
 || start_receive_res(dummy). (TrPIexp(self, Loop_Pid ! stop.)))))

Now BNS={lpid, p, loop_res, dummy, Loop_Pid, start_send1_res, start_receive_res}

Rule(26C) has to be applied now for translating the receive statement above. There
are two variables Loop_Pid and Msg within the tuple of pattern in the receive
statement match. According to rule (26C), we will first consider that variables
Loop_Pid and Msg are now names in the π-calculus. After that we will check whether
Loop_Pid and Msg are elements of BNS or not. It is found that Loop_Pid ! BNS but
the second name Msg !BNS. As Loop_Pid !BNS, we will now consider Loop_Pid
as an atom and apply name matching feature for Loop_Pid like an atom. As Msg
!BNS, we will consider Msg as an unbound variable in PIErlang and translate
accordingly.

(26C)
=new lpid, p, loop_res, start_send1_res, start_receive_res (p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self, hello>.nil ||
 start_send1_res´<self, hello>.nil || start_send1_res(dummy).
 (self(input_pat1, Msg).[input_pat1=Loop_Pid] TrPIexp(self, Msg)
 || start_receive_res(dummy). (TrPIexp(self, Loop_Pid ! stop.)))))

Chapter 5. Mapping Tuples with Polyadic Communications

 102

BNS={lpid, p, loop_res, dummy, Loop_Pid, start_send1_res, start_receive_res,
 input_pat1, Msg}

This is the core point we are dealing with. We see that we have applied name
matching feature for Loop_Pid considering it as an atom.

(6) (9) ->(5) (3)
=new lpid, p, loop_res, start_send1_res, start_receive_res (p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self, hello>.nil ||
 start_send1_res´<self, hello>.nil || start_send1_res(dummy).
 (self(input_pat1, Msg).[input_pat1=Loop_Pid] start_receive_res´<Msg>.nil
 || start_receive_res(dummy).(Loop_Pid´<stop>.nil ||
 start_send2_res´<stop>.nil))))

Now BNS={lpid, p, loop_res, dummy, Loop_Pid, start_send1_res, start_receive_res,
 input_pat1, Msg}

Similarly, for the loop process of Program 5.5:

TrPIfundef(self, loop() ->
 receive
 {Main_Pid, Msg} ->
 Main_Pid ! {self(), Msg},
 loop();
 stop -> true
 end.)

Initially, BNS is empty i.e. BNS={ }

(20A) ->(14)
=loop(self)=TrPIexp(self,
 receive
 {Main_Pid, Msg} ->
 Main_Pid ! {self(), Msg},
 loop();
 end.) +
 TrPIexp(self,
 receive
 stop -> true
 end.)
 BNS={ }

Chapter 5. Mapping Tuples with Polyadic Communications

 103

(26C, as both Main_Pid and Msg !BNS)
=self(Main_Pid, Msg).(TrPIexp(self, Main_Pid ! {self(), Msg}, loop())) +
 self(input_pat1).[input_pat1=stop] TrPIexp(self, true)

 BNS={Main_Pid, Msg, input_pat1}

(13)->(25)->(5) (22) (10A) (4) (loop_res is restricted to the whole system for
returning result of loop function)
=new loop_send_res(self(Main_Pid, Msg).(Main_Pid´<self, Msg>.nil ||
 loop_send_res´<self, Msg>.nil || loop_send_res(dummy).loop(self)) +
 self(input_pat1).[input_pat1=stop] loop_res´ <true>.nil)

 BNS={Main_Pid, Msg, input_pat1, loop_send_res, loop_res}

Variable Msg is used as the patterns of both the receive statements of start and loop
functions. According to PIErlang, it does not matter whether it is the same variable
name or different as long as it is used in different function definitions. We have also
kept this semantics in translated system by considering separate BNS for each of the
function definitions, thus, there will be no problem if there are same names in
different BNS while translating.

5.5.8(c) The π-Model

From Section 5.5.8(b), the π-model of Program 5.5 with rule(26C) can be written as
follows:

main()=new self(start(self))

start(self)=new lpid, p, loop_res, start_send1_res, start_receive_res (p´<lpid>.nil ||
 loop(lpid) || loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self, hello>.nil ||
 start_send1_res´<self, hello>.nil || start_send1_res(dummy).
 (self(input_pat1, Msg).[input_pat1=Loop_Pid] start_receive_res´<Msg>.nil
 || start_receive_res(dummy).(Loop_Pid´<stop>.nil ||
 start_send2_res´<stop>.nil))))

loop(self)= new loop_send_res(self(Main_Pid, Msg).(Main_Pid´<self, Msg>.nil ||
 loop_send_res´<self, Msg>.nil || loop_send_res(dummy).loop(self)) +
 self(input_pat1).[input_pat1=stop] loop_res´ <true>.nil)

Chapter 5. Mapping Tuples with Polyadic Communications

 104

5.5.8(d) Observing Behavior in π-calculus

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(start(self))

(substituting RHS of process start(self))
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res (p´<lpid>.nil ||
 loop(lpid) || loop_res(dummy).nil || p(Loop_Pid). (Loop_Pid´<self, hello>.nil ||
 start_send1_res´<self, hello>.nil || start_send1_res(dummy).
 (self(input_pat1, Msg).[input_pat1=Loop_Pid] start_receive_res´<Msg>.nil ||
 start_receive_res(dummy).(Loop_Pid´<stop>.nil || start_send2_res´<stop>.nil))))

(react on p,every free occurance Loop_Pid is bound with PID of loop process, lpid)-
>(Omitting nil process)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res (
 // loop process
 loop(lpid) || loop_res(dummy).nil
 || // start process
 (lpid´<self, hello>.nil || start_send1_res´<self, hello>.nil ||
 start_send1_res(dummy).(self(input_pat1, Msg).[input_pat1=lpid]
 start_receive_res´<Msg>.nil || start_receive_res(dummy).(lpid´<stop>.nil ||
 start_send2_res´<stop>.nil))))

All the occurrences of Loop_Pid are now free occurrence and hence are replaced by
lpid due to applying the reaction rule on p. In Section 5.5.6(d), one occurrence of
Loop_Pid has been found as bound while translating with rule (26A) and thus, there
was a problem with semantic matching between π-calculus and PIErlang.

 (substituting RHS of process loop(self) with lpid as parameter i.e. self -> lpid)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 // loop process
 (lpid(Main_Pid, Msg).(Main_Pid´<lpid, Msg>.nil || loop_send_res´<lpid,
 Msg>.nil || loop_send_res(dummy).loop(lpid)) + lpid(input_pat1).
 [input_pat1=stop] loop_res´ <true>.nil) || loop_res(dummy).nil
 || // start process
 (lpid´<self, hello>.nil || start_send1_res´<self, hello>.nil ||
 start_send1_res(dummy).(self(input_pat1, Msg).[input_pat1=lpid]
 start_receive_res´<Msg>.nil || start_receive_res(dummy).(lpid´<stop>.nil ||
 start_send2_res´<stop>.nil))))

Chapter 5. Mapping Tuples with Polyadic Communications

 105

From the PIErlang Program 5.5 and/or from its corresponding schematic
diagram(Figure 5.4), we know that start process and loop process are executed in
parallel. While executing in parallel, start process has the option to send a tuple of
message {self, hello} to loop process(Figure 5.4) and then it can receive a tuple of
message and finally it can send an atom stop to loop process in sequence. We see here
that the translated π-calculus system shows the same behavior. The start process and
loop process work in parallel and tuple of message {self, hello} is sent along channel
lpid. We know lpid is the PID of loop process and hence its clear that this tuple of
message is sent to the loop process. Although loop process is ready to receive a tuple
of message (size 2) or a single atom, it can only receive the tuple of message since the
start process only sends the tuple of message first. Start process will then receive a
tuple of message and finally, will send the message stop. We have found the same
behavior in translated system. Start process is ready to send tuple of message with
lpid´<self, hello>.nil and atom of message with start_receive_res(dummy).(lpid´<stop>.nil

|| start_send2_res´ <stop>.nil). We see that before sending atom stop to loop process
there must be a dummy communication along the receiver channel (start_receive_res)
of start process which means that receiving of tuple of start process has to be
performed first then then it can send message stop to loop process. In this way, we
keep the sequene of execution of expressions in translated system, the same way we
can expect from PIErlang program.

(react on lpid, loop process has received a tuple of message from start process)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// loop process
 self´<lpid, hello>.nil || loop_send_res´<lpid, hello>.nil ||
 loop_send_res(dummy).loop(lpid)) || loop_res(dummy).nil
 || // start process
 (nil || start_send1_res´<self, hello>.nil || start_send1_res(dummy).(
 self(input_pat1, Msg).[input_pat1=lpid] start_receive_res´<Msg>.nil ||
 start_receive_res(dummy).(lpid´<stop>.nil || start_send2_res´<stop>.nil))))

Now, loop process sends a tuple of message (its PID lpid and atom hello) to start
process (PID self). We have found that the same behavior from PIErlang Program 5.5
and also from its corresponding schematic diagram (Figure 5.4). But start process has
to perform a dummy communication over its first sender channel named
start_send1_res. This dummy communication forces the start process to maintain the
sequence of execution of expressions as we have mentioned above. Here a
communication along channel start_send1_res means that start process has to send the
tuple of message before receiving since sending expression is ahead of receiving

Chapter 5. Mapping Tuples with Polyadic Communications

 106

expression in program 5.5. However, to have a communication over start_send1_res,
we are required to adapt the receiver side channel with sender one with CAR for
DC(cf. Section 5.5.4(d)).

(CAR for DC on receiver side channel start_send1_res)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// loop process
 self´<lpid, hello>.nil || loop_send_res´<lpid, hello>.nil ||
 loop_send_res(dummy).loop(lpid)) || loop_res(dummy).nil
 || // start process
 (nil || start_send1_res´<self, hello>.nil ||start_send1_res(dummy1, dummy2).(
 self(input_pat1, Msg).[input_pat1=lpid] start_receive_res´<Msg>.nil ||
 start_receive_res(dummy).(lpid´<stop>.nil || start_send2_res´<stop>.nil))))

(react on start_send1_res)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// loop process
 self´<lpid, hello>.nil || loop_send_res´<lpid, hello>.nil ||
 loop_send_res(dummy).loop(lpid)) || loop_res(dummy).nil
 || // start process
 (nil || nil || (self(input_pat1, Msg).[input_pat1=lpid]
 start_receive_res´<Msg>.nil ||start_receive_res(dummy).(lpid´<stop>.nil ||
 start_send2_res´<stop>.nil))))

(react on self, now its possible for the start process to receive message {lpid, hello}
from loop process)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// loop process
 nil || loop_send_res´<lpid, hello>.nil ||
 loop_send_res(dummy).loop(lpid)) || loop_res(dummy).nil
 || // start process
 (nil || nil || ([lpid=lpid] start_receive_res´<hello>.nil
 || start_receive_res(dummy).(lpid´<stop>.nil || start_send2_res´<stop>.nil))))

A successful name matching [lpid=lpid] is found which implies that message hello is
now sent along receiver channel (start_receive_res) of the start process. Now start
process can send message stop to the loop process but before doing so there should be
a dummy communication over channel start_receive_res, for the same reason we
have mentioned before, to maintain the sequence of execution of expressions.

Chapter 5. Mapping Tuples with Polyadic Communications

 107

(react start_receive_res, now its possible for the start process to send message stop to
loop process)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// loop process
 nil || loop_send_res´<lpid, hello>.nil ||
 loop_send_res(dummy).loop(lpid)) || loop_res(dummy).nil
 || // start process
 (nil || nil || (nil || (lpid´<stop>.nil || start_send2_res´<stop>.nil))))

We know from Program 5.5 and/or from Figure 5.4 that loop process can receive a
tuple of message and then starts the loop process again or it can receive the message
stop. If it receives atom stop, further execution will be terminated by evaluating atom
true. As loop process has received a tuple of message, it can now start again to receive
further messages (tuple of message or message stop). However, before restarting the
loop process, there should a dummy communication over channel loop_send_res,
which binds the loop process to be started again only after performing the send
operation ahead of it. We also notice that we are required to adapt (CAR for DC) the
receiver side of channel loop_send_res to have a communication.

(CAR for DC on receiver side channel loop_send_res) -> (react on loop_send_res)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// start process
 nil || nil || loop(lpid)) || loop_res(dummy).nil

 || // start process
 (nil || nil || (nil || (lpid´<stop>.nil || start_send2_res´<stop>.nil))))

(Omitting the inactive nil processes)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// loop process
 loop(lpid) || loop_res(dummy).nil)
 || // start process
 (lpid´<stop>.nil || start_send2_res´<stop>.nil))

(substituting the RHS of loop process with lpid as parameter i.e. self->lpid , in this
way it can now be restarted again)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// loop process
 lpid(Main_Pid, Msg).(Main_Pid´<lpid, Msg>.nil ||
 loop_send_res´<lpid, Msg>.nil || loop_send_res(dummy).loop(lpid)) +
 lpid(input_pat1).[input_pat1=stop] loop_res´ <true>.nil)

Chapter 5. Mapping Tuples with Polyadic Communications

 108

 || // start process
 (lpid´<stop>.nil || start_send2_res´<stop>.nil))

Start process sends a message stop to loop process and loop process is ready to
receive that atom too.

(react on lpid)
=>new self, lpid, p, loop_res, start_send1_res, start_receive_res, loop_send_res (
 (// loop process
 [stop=stop] loop_res´ <true>.nil)

 || // start process
 (nil || start_send2_res´<stop>.nil))

A successful name matching [stop=stop] is found and consequently, atom true is sent
over the result channel of loop process and thus, terminates further execution and
communication with start process. As we see, π-model now works well meeting the
semantics of PIErlang therefore, we can say that rule(26C) works correctly. However,
its BNS contains some extra names(cf. Section 5.5.9).

5.5.9 Improving Rule (26C): Providing BNS with Receive Actions of Variables

While working with rule (26C), we have observed that it is not required to work with
the bound names those are included to BNS due to the new operator of π-calculus.
This is because, we are dealing with bounding of a variable in PIErlang and this can
only be done with a receive action in π-calculus. We have also noticed that we are not
required to consider all the bound names of the receive action. We only need to
consider those bound names of receive action that are variables in PIErlang program.
Thereby, we have modified the definition of BNS and renamed Bound Name Set
(BNS) as Bound Names Set with Receive Actions of Variables (BNSRAV).

We can now redefine rule (26C) to rule (26D) with the modified definition of BNS.
Rule(26D) will work for both monadic and polyadic communications. If (n=1), rule
(26D) will be capable of handling atomic arguments as of rules (15), (16) and (17A).
Thereby, from now rule (26D) will be used for any kind (tuple-based & atomic
arguments) of pattern matching in Matches of receive and case expressions

Chapter 5. Mapping Tuples with Polyadic Communications

 109

5.5.10 PIErlang Program 5.6: Rule (26D) Sounds Perfect

We will now consider another example, the so called locker process [2] to verify
rule(26D) where a variable is bound with pattern matching in receive statement rather
than assignment in the case of echo process in Program 5.5(cf. Section 5.5.8).

start() ->
 Locker_Pid =spawn(locker, []),

 spawn(client, [Locker_Pid]),
 spawn(client, [Locker_Pid]).

locker() ->
 receive
 {request, Client} -> // Client is bound here
 Client !ok,

 receive
 {release, Client} -> //Client Behaves like atom
 locker()
 end
 end.

client(Locker_Pid) ->
 Locker_Pid !{request, self()},
 receive
 ok ->do_critical_works,
 Locker_Pid !{release, self()},
 client(Locker_Pid)
 end.

Program 5.6 A simple locker process.

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIexp(self, E) ;
if Pi∈{Atoms, Numbers} or if Pi∈{Variables} and name Pi∈BNSRAV
 -(26D)
self(…,X,…)… TrPIexp(self, E) ; if Pi∈{Variables}, where Pi is a
variable X and name X∉BNSRAV

TrPImatch(self, {P1,……,Pn} -> E) =

Where BNSRAV ={ X | y(..,X,..) is a receive action in π-calculus and X is a
 variable in PIErlang function for which X is considered as a name in π-calculus.}

Chapter 5. Mapping Tuples with Polyadic Communications

 110

5.5.10(a) Execution in PIErlang Compiler

The execution behavior of Program 5.6 is shown in Figure 5.5. More details can be
found in Section 5.5.10(d) while observing its π-model behavior in π-calculus.

5.5.10(b) Translation in the π-calculus

In function locker() of Program 5.6, variable Client is used twice within a nested
receive statement. According to Erlang semantics, Client is bound with a value by the
first receive statement and then in the second nested receive statement it behaves like

locpid c_Pid1

start() client(Locker_Pid)

spawn

 {request, c_Pid1}

c_Pid2
 self

locker()

spawn

spawn

client(Locker_Pid)

locpid c_Pid1 c_Pid2

 ok
locpid c_Pid1 c_Pid2

“do_critical_works”

locpid c_Pid1 c_Pid2
 {release, c_Pid1}

 {request, c_Pid2}
locpid c_Pid2

 ok
locpid c_Pid2

 {release, c_Pid2}
locpid c_Pid2

“do_critical_works”

 {request, c_Pid1}
locpid c_Pid1

and so on……

Figure 5.5 Communicating schematic diagram of locker process Program 5.6.

c_Pid2

Chapter 5. Mapping Tuples with Polyadic Communications

 111

atom. The translation procedure of Program 5.6 is described below with rule (26D) by
considering such kind of variable binding:

According to rule(21),
main()=new self(start(self))

TrPIfundef(start() ->
 Locker_Pid =spawn(locker, []),

 spawn(client, [Locker_Pid]) ,
 spawn(client, [Locker_Pid]).)

Initially, BNSRAV is empty i.e. BNSRAV={ }

(20A)
=start(self)=TrPIexp(self, Locker_Pid =spawn(locker, []),

 spawn(client, [Locker_Pid]) ,
 spawn(client, [Locker_Pid]).)

BNSRAV={ }

(11, we suppose locpid is the PID of the locker process) ->(10A)
=new locpid, p, locker_res (p´<locpid>.nil || locker(locpid) || locker_res(dummy).nil ||
 p(Locker_Pid). (TrPIexp(self, spawn(client, [Locker_Pid]), spawn(client,
 [Locker_Pid]))))

BNSRAV={Locker_Pid}

There are two spawn calls for the same client function definition. We suppose that the
first and second spawn calls to client process will return the client process identifiers
c_Pid1 and c_Pid2 respectively.

(12) ->(10)->(12)->(10)
=new locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res (
 p´<locpid>.nil || locker(locpid) || locker_res(dummy).nil || p(Locker_Pid). (
 client(c_Pid1, Locker_Pid) || client1_res(dummy).nil || client(c_Pid2,
 Locker_Pid) || client2_res(dummy).nil))

BNSRAV={Locker_Pid}

Chapter 5. Mapping Tuples with Polyadic Communications

 112

Now for the locker process:

TrPIfundef(self, locker() ->
 receive
 {request, Client} ->
 Client !ok,

 receive
 {release, Client} ->
 locker()
 end
 end.)

Initially, BNSRAV is empty i.e. BNSRAV={ }

 (20A) ->(14)->(26D, Client!BNSRAV, so its still unbound variable)
 =locker(self)= self(input_pat1, Client).[input_pat1=request] (TrPIexp(self, Client !ok,
 receive
 {release, Client} ->
 locker()
 end))

Now BNSRAV={Client} ; variable Client is used in receive action self(input_pat1,
 Client)

 (13) ->(9) -> (5) (3) (14)->(26D, Client!BNSRAV, so now Client will be
considered as an atom)->(10A)
=new locker_send_res (self(input_pat1, Client).[input_pat1=request] (Client´<ok>.nil
 || locker_send_res´<ok>.nil || locker_send_res(dummy). (self(input_pat2,
 input_pat3).[input_pat2=release][input_pat3=Client] locker(self))))

Now BNSRAV={Client}

Now for the client process:

TrPIfundef(self, client(Locker_Pid) ->
 Locker_Pid !{request, self()},
 receive
 ok ->do_critical_works,
 Locker_Pid !{release,self()},
 client(Locker_Pid)
 end.)
Initially, BNSRAV is empty i.e. BNSRAV={ }

Chapter 5. Mapping Tuples with Polyadic Communications

 113

(20)->(13) ->(25) ->(5) (3) (22) ->(14)
=client(self, Locker_Pid)=new client_send1_res (Locker_Pid´<request, self>.nil ||
 client_send1_res´<request, self>.nil || client_send1_res(dummy). (
 TrPImatch(self, ok ->do_critical_works,
 Locker_Pid !{release,self()},
 client(Locker_Pid))))
BNSRAV={ }

 (26D)->(13)->(4) ->(25)->(5) (3) (22)->(13)->(10)->(5)
=new client_send1_res, client_exp1_res, client_exp2_res (Locker_Pid´<request,
 self>.nil || client_send1_res´<request, self>.nil || client_send1_res(dummy).(
 self(input_pat1).[input_pat1=ok] (client_exp1_res´<do_critical_works>.nil ||
 client_exp1_res(dummy).(Locker_Pid´<release, self>.nil ||
 client_exp2_res´<release, self>.nil || client_exp2_res(dummy). client(self,
 Locker_Pid)))))

BNSRAV={}

5.5.10(c) The π-Model

From Section 5.5.10(b), the π-model of Program 5.6 can be written as follows:

main()=new self(start(self))

start(self)= new locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res (
 p´<locpid>.nil || locker(locpid) || locker_res(dummy).nil || p(Locker_Pid). (
 client(c_Pid1, Locker_Pid) || client1_res(dummy).nil || client(c_Pid2,
 Locker_Pid) || client2_res(dummy).nil))

locker(self)= new locker_send_res (self(input_pat1, Client).[input_pat1=request]
 (Client´<ok>.nil || locker_send_res´<ok>.nil || locker_send_res(dummy). (
 self(input_pat2, input_pat3).[input_pat2=release][input_pat3=Client]
 locker(self))))

client(self, Locker_Pid)= new client_send1_res, client_exp1_res, client_exp2_res (
 Locker_Pid´<request, self>.nil || client_send1_res´<request, self>.nil ||
 client_send1_res(dummy).(
 self(input_pat1).[input_pat1=ok] (client_exp1_res´<do_critical_works>.nil ||
 client_exp1_res(dummy).(Locker_Pid´<release, self>.nil ||
 client_exp2_res´<release, self>.nil || client_exp2_res(dummy). client(self,
 Locker_Pid)))))

Chapter 5. Mapping Tuples with Polyadic Communications

 114

5.5.10(d) Observing Behavior in π-calculus:

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(start(self))

(substituting RHS of process start(self))
=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res (
 p´<locpid>.nil || locker(locpid) || locker_res(dummy).nil || p(Locker_Pid). (
client(c_Pid1, Locker_Pid) || client1_res(dummy).nil || client(c_Pid2, Locker_Pid) ||
client2_res(dummy).nil))

Now we can apply the reaction rule on p, thus all free occurreness of Locker_Pid will
be replaced by locpid, PID of locker process. All the occurrences of Locker_Pid are
free and hence will be replaced by locpid. Here client(c_Pid1, Locker_Pid) and
client(c_Pid2, Locker_Pid) are two process calls to the client process with different
PIDs.

(react on p) ->(Omitting nil process)
*=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res (
 // locker process
locker(locpid) || locker_res(dummy).nil
|| // first instance of client process
 client(c_Pid1, locpid) || client1_res(dummy).nil
|| // second instance of client process
client(c_Pid2, locpid) || client2_res(dummy).nil)

Here in the above π-model, locker process and two instances of the client processes
are started running in parallel. The same thing is found in PIErlang Program 5.6 and
its corresponding communication schematic diagram in Figure 5.5. At that moment,
either the first or the second instance of the client process can start communication
with the locker process by sending a request to the locker process. From Figure 5.5,
we see that first instance of the client process sends a request along with its PID to the
locker process.

After receiving the request from first client instance, locker process allows it to do
critical works by sending an ok message. After finishing the critical works, it(first
client instance) send a release message to the locker process, thus releasing the locker.
At that moment, a new instance (either first or second instance of client process) of
the client process can send request to the locker process to get the locker for doing

Chapter 5. Mapping Tuples with Polyadic Communications

 115

critical works. In Figure 5.5, we see that the second instance of the client process
sends the request to the locker process. After getting request from client process
(second instance), locker process grants it to do critical works. After finishing critical
works, client process (second instance) sends a release message to the locker process,
thus releasing the locker and so on.

(substituting RHS definitions of locker process with self->locpid, first client process
with self->c_Pid1, Locker_Pid ->locpid)
=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res,
locker_send_res, client_send1_res, client_exp1_res, client_exp2_res(

 // locker process
(locpid(input_pat1, Client).[input_pat1=request] (Client´<ok>.nil ||
locker_send_res´<ok>.nil || locker_send_res(dummy). (locpid(input_pat2,
input_pat3).[input_pat2=release][input_pat3=Client] locker(locpid)))) ||
locker_res(dummy).nil

|| // first instance of client process

 locpid´<request, c_Pid1>.nil || client_send1_res´<request, c_Pid1>.nil ||
client_send1_res(dummy).(c_Pid1(input_pat1).[input_pat1=ok] (
client_exp1_res´<do_critical_works>.nil || client_exp1_res(dummy).(
locpid ´<release, c_Pid1>.nil || client_exp2_res´<release, c_Pid1>.nil ||
client_exp2_res(dummy). client(c_Pid1, locpid)))) || client1_res(dummy).nil

|| // second instance of client process
client(c_Pid2, locpid) || client2_res(dummy).nil)

 According to Figure 5.5, we also suppose that first instance (PID c_Pid1) of the client
process requests the locker process to get permission to do critical works.

 (react on locpid)
=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res,
locker_send_res, client_send1_res, client_exp1_res, client_exp2_res(
 // locker process
([request=request] (c_Pid1´<ok>.nil || locker_send_res´<ok>.nil ||
locker_send_res(dummy). (locpid(input_pat2,
input_pat3).[input_pat2=release][input_pat3= c_Pid1] locker(locpid)))) ||
locker_res(dummy).nil

Chapter 5. Mapping Tuples with Polyadic Communications

 116

|| // first instance of client process

nil || client_send1_res´<request, c_Pid1>.nil || client_send1_res(dummy).(
c_Pid1(input_pat1).[input_pat1=ok] (client_exp1_res´<do_critical_works>.nil ||
client_exp1_res(dummy).(locpid ´<release, c_Pid1>.nil || client_exp2_res´<release,
c_Pid1>.nil || client_exp2_res(dummy). client(c_Pid1, locpid)))) ||
client1_res(dummy).nil

|| // second instance of client process
client(c_Pid2, locpid) || client2_res(dummy).nil
)

In locker process, name matching [request=request] is found, consequently, it sends
permission message ok to the first client instance (PID c_Pid1) but client process is
not ready to receive this. To do so, it has to perform a dummy communication on
channel client_send1_res.

(CAR for DC on client_send1_res)-> (react on client_send1_res)->(name matching
[request=request] is found) -> (react on c_Pid1)
=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res,
locker_send_res, client_send1_res, client_exp1_res, client_exp2_res(

 // locker process
((nil || locker_send_res´<ok>.nil || locker_send_res(dummy). (locpid(input_pat2,
input_pat3).[input_pat2=release][input_pat3= c_Pid1] locker(locpid)))) ||
locker_res(dummy).nil

|| // first instance of client process

nil || nil || ([ok=ok] (client_exp1_res´<do_critical_works>.nil ||
client_exp1_res(dummy).(locpid ´<release, c_Pid1>.nil || client_exp2_res´<release,
c_Pid1>.nil || client_exp2_res(dummy). client(c_Pid1, locpid)))) ||
client1_res(dummy).nil
|| // second instance of client process
client(c_Pid2, locpid) || client2_res(dummy).nil
)

In the first client process, a name matching [ok=ok] is found and thus, it can now do
critical works.

Chapter 5. Mapping Tuples with Polyadic Communications

 117

(name matching [ok=ok] is found)->(first client instance is now can do critical works
) -> (react on client_exp1_res)
=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res,
locker_send_res, client_send1_res, client_exp1_res, client_exp2_res(

 // locker process
((nil || locker_send_res´<ok>.nil || locker_send_res(dummy).(locpid(input_pat2,
input_pat3).[input_pat2=release][input_pat3= c_Pid1] locker(locpid)))) ||
locker_res(dummy).nil

|| // first instance of client process

nil || nil || ((nil || (locpid ´<release, c_Pid1>.nil || client_exp2_res´<release,
c_Pid1>.nil || client_exp2_res(dummy). client(c_Pid1, locpid)))) ||
client1_res(dummy).nil

|| // second instance of client process
client(c_Pid2, locpid) || client2_res(dummy).nil
)

Client process (First instance) sends the release message to the locker process. But
before receiving, locker has to perform a dummy communication to maintain the
sequence of execution of expressions on channel locker_send_res.

(react on locker_send_res) ->(react on locpid)
=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res,
locker_send_res, client_send1_res, client_exp1_res, client_exp2_res(

 // locker process
((nil || nil || ([release=release][c_Pid1= c_Pid1] locker(locpid)))) ||
locker_res(dummy).nil
|| // first instance of client process

nil || nil || ((nil || (nil || client_exp2_res´<release, c_Pid1>.nil ||
client_exp2_res(dummy). client(c_Pid1, locpid)))) || client1_res(dummy).nil

|| // second instance of client process
client(c_Pid2, locpid) || client2_res(dummy).nil
)

A successful name matching [release=release][c_Pid1= c_Pid1] is found and
consequently locker process can now start again for serving next client request.

Chapter 5. Mapping Tuples with Polyadic Communications

 118

(CAR for DC on client_exp2_res) -> (react on client_exp2_res, for maintaining
sequence of execution of expressions)
=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res,
locker_send_res, client_send1_res, client_exp1_res, client_exp2_res(

 // locker process
((nil || nil || (locker(locpid)))) || locker_res(dummy).nil

|| // first instance of client process

nil || nil || ((nil || (nil || nil ||client(c_Pid1, locpid)))) || client1_res(dummy).nil

|| // second instance of client process
client(c_Pid2, locpid) || client2_res(dummy).nil
)

(Omitting inactive nil processes)
=>new self, locpid, p, locker_res, c_Pid1, c_Pid2, client1_res, client2_res,
locker_send_res, client_send1_res, client_exp1_res, client_exp2_res(

 // locker process
locker(locpid) || locker_res(dummy).nil

|| // first instance of client process

client(c_Pid1, locpid) || client1_res(dummy).nil

|| // second instance of client process
client(c_Pid2, locpid) || client2_res(dummy).nil
)

Now we see that we are now again on the same initial state(* above) where locker
process and two instances client processes work in parallel. At that moment, again
first instance of client process can send a request to the locker process for granting
permission of doing critical works or the second instance of the client process has the
same chance to request the locker process for getting permission of doing critical
works. In Figure 5.5, we see that second instance of the client process sends request to
the locker process for getting permission of doing critical works. As per the request,
locker process grants permission to the second client process and thus, allowing it to
do critical works and finally, it (second instance of client process) sends release
information to the locker process and so on.

The main reason behind using this locker process is to verify the soundness of rule
(26D). We see that translated π-model with rule (26D) works accurately in π-calculus

Chapter 5. Mapping Tuples with Polyadic Communications

 119

and shows the same behavior like its corresponding PIErlang program, thereby, rule
(26D) sounds perfect.

5.6 Tuples in Case Expressions

The basic concept of working with tuples in case expression is the same as already
discussed in Section 4.8.2 with rule (19). The only modification to this rule is the
adaptation of case_res channel from monadic to polyadic form for supporting tuples
in communication. To deal with the tuple-based matches in case expression, rule
(26D) will be used. For evaluating the tuple-based case head, rule (24) will be used
with res replaced by case_res. As in Section 4.8, all variables used in case head must
be bound.

5.6.1 PIErlang Program 5.7: Tuples in Case Expression

Let us consider the following Program 5.7 where case expression is used:

start()-> Weekday=monday,
 Work=swimming,
 spawn(loop, [Weekday, Work]).

loop(X, Y)->
 case {X, hello, Y} of

 {monday, hello, swimming} -> go_for_swim;
 {Weekend, hi, rest}-> take_rest;

 Undefined -> sleep
 end.

Program 5.7: A simple case-based message passing process.

5.6.1(a) Execution in PIErlang Compiler

In Figure 5.6, it is shown that for the spawn function, processes start and loop work in
parallel. While they work in parallel, communications between them are described
with the label graph.

The loop function within spawn call(in start function) is initiated with its arguments
Weekday and Work. They already assigned values monday and swimming
respectively. When loop function is called variables X and Y in loop function are
bound with values monday and swimming respectively. In loop process there is a case

Chapter 5. Mapping Tuples with Polyadic Communications

 120

expression which uses these values and for a successful pattern matching
go_for_swim is returned as the result of the case expression and thus, result of the
whole loop process.

5.6.1(b) Translation in the π-calculus

According to rule(21),

main()=new self(start(self))

TrPIexp(self, start()-> Weekday=monday,
 Work=swimming,
 spawn(loop, [Weekday, Work]).)

Initially, BNSRAV is empty i.e. BNSRAV={ }

(20A) (7)->(7)->(12)->(10)(5)
=start(self)= new exp1_res, exp2_res, lpid, loop_res (exp1_res´<monday>.nil ||
exp1_res(Weekday). (exp2_res´<swimming>.nil || exp2_res(Work).(loop(lpid,
Weekday, Work) || loop_res(dummy))))

Finally, BNSRAV={ Weekday, Work }

TrPIexp(self, loop(X, Y)->
 case {X, hello, Y} of

 {monday, hello, swimming} -> go_for_swim;
 {Weekend, hi, rest}-> take_rest;

 Undefined -> sleep
 end.)

Initially, BNSRAV is empty i.e. BNSRAV={ }

self lpid

start() loop() spawn

 X=monday
 Y=swimming

“go_for_swim”

Figure 5.6 Schematic diagram of the Program 5.7

Chapter 5. Mapping Tuples with Polyadic Communications

 121

(20) (19)
=loop(self, X, Y) =new case_res (

 // case head
 TrPIexp(self, {X, hello, Y}) ||

 // case body
 TrPIexp(case_res, receive

 {monday, hello, swimming} -> go_for_swim;
 {Weekend, hi, rest}-> take_rest;

 Undefined -> sleep
 end))

((24 with res -> case_res) ->(5) (3)), ((14) ->(26D))
=new case_res (
 // case head
 (case_res´<X, hello, Y>.nil ||
 // case body
 (
 // first match
case_res(input_pat1, input_pat2, input_pat3).[input_pat1=monday]
[input_pat2=hello] [input_pat3=swimming] fun_case_res´<go_for_swim>.nil +
 // second match
 case_res(Weekend, input_pat4, input_pat5).[input_pat4=hi] [input_pat5=rest]
 fun_case_res´<take_rest>.nil +
 // third match
case_res(Undefined). fun_case_res´<sleep>.nil
)))

Finally, BNSRAV={ Weekend, Undefined }

5.6.1(c) The π-Model

From Section 5.6.1(b), the π-model of Program 5.7 can be written as follows:

main()=new self(start(self))

start(self)= new exp1_res, exp2_res, lpid, loop_res (exp1_res´<monday>.nil ||
exp1_res(Weekday). (exp2_res´<swimming>.nil || exp2_res(Work).(loop(lpid,
Weekday, Work) || loop_res(dummy))))

Chapter 5. Mapping Tuples with Polyadic Communications

 122

loop(self, X, Y)=new case_res (
 // case head
 (case_res´<X, hello, Y>.nil ||
 // case body
 (
 // first match
case_res(input_pat1, input_pat2, input_pat3).[input_pat1=monday]
[input_pat2=hello] [input_pat3=swimming] fun_case_res´<go_for_swim>.nil +
 // second match
 case_res(Weekend, input_pat4, input_pat5).[input_pat4=hi] [input_pat5=rest]
 fun_case_res´<take_rest>.nil +
 // third match
case_res(Undefined). fun_case_res´<sleep>.nil
)))

5.6.1(d) Observing Behavior in π-calculus

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(start(self))

(substituting RHS of process start(self))
=new exp1_res, exp2_res, lpid, loop_res (exp1_res´<monday>.nil ||
exp1_res(Weekday). (exp2_res´<swimming>.nil || exp2_res(Work).(loop(lpid,
Weekday, Work) || loop_res(dummy))))

(react on exp1_res) -> (react on exp2_res) (in this way name Weekday and Work are
replaced with atoms monday and swimming respectively)
=new self, exp1_res, exp2_res, lpid, loop_res (nil || (nil || (loop(lpid, monday,
swimming) || loop_res(dummy))))

(substituting RHS of process loop(self, X, Y) with self->lpid, X->monday,
Y ->swimming)
=new self, exp1_res, exp2_res, lpid, loop_res, case_res(nil || (nil || (
 // case head
 (case_res´<monday, hello, swimming>.nil ||
 // case body
 (

Chapter 5. Mapping Tuples with Polyadic Communications

 123

 // first match
case_res(input_pat1, input_pat2, input_pat3).[input_pat1=monday]
[input_pat2=hello] [input_pat3=swimming] fun_case_res´<go_for_swim>.nil +
 // second match
 case_res(Weekend, input_pat4, input_pat5).[input_pat4=hi] [input_pat5=rest]
 fun_case_res´<take_rest>.nil +
 // third match
case_res(Undefined). fun_case_res´<sleep>.nil
)) loop_res(dummy))))

In case head, a tuple of message {monday, hello, swimming} is sent along channel
case_res. There are two possibilities in case body to have a receive action along
channel case_res. We consider that the tuple of message is sent from case head and
the tuple receive action of first match in case body receives that tuple.

(react on case_res, with first match)
=new self, exp1_res, exp2_res, lpid, loop_res, case_res(nil || (nil || (
 // case head
 (nil ||
 // case body
 (
 // first match
 [monday=monday] [hello=hello] [swimming=swimming
 fun_case_res´<go_for_swim>.nil
)) loop_res(dummy))))

Name matching ([monday=monday][hello=hello][swimming=swimming]) is found
and as a result atom go_for_swim is sent along the result channel fun_case_res of loop
process. This is the usual situation where accurate expected result is found as of
PIErlang Program 5.7. If the tuple receive action of the second match is
communicated with the case head instead of the tuple receive action of the first match
then name mismatching will be found and there will be a possibility of deadlock in the
system. We consider that such deadlocks will be handled in π-calculus by looking for
further possibility of successfully matching.

5.7 An Approach to Improve Send Rule (25)

The translation mappings rules for send and receive expressions with tuples discussed
Sections 5.4 and 5.5 must meet the equality semantics of send-receive expressions

Chapter 5. Mapping Tuples with Polyadic Communications

 124

with respect to the size of tuples used i.e., if a tuple of size n is sent with rule (25),
then in receiving side (Match rule (26D)), there must be at least one matching tuple
pattern of size n. But in PIErlang or in Erlang, there may be different situations. Let
us consider the following Program 5.8.

start() ->
 Loop_Pid=spawn(loop, []),
 Loop_Pid ! {self(), hello}.
loop() ->
 receive
 {From, Message, request} -> do_works;
 stop -> terminate;
 Y -> sleep
 end.

Program 5.8 An Unusual Program

5.7. 1 PIErlang Program 5.8: Send rule(25) is Insufficient

In this section, rule (25) is found insufficient to meet PIErlang semantics.

5.7.1(a) Execution in PIErlang Compiler

The execution mechanism of Program 5.8 in PIErlang compiler is shown in Figure
5.7. As usual spawn function in start function invokes the loop function to be
executed in parallel and then start process(start function) sends the tuple of message
{self(), hello} to the loop process(loop function).

self lpid

start() loop() spawn

self lpid
{self, hello}

Y={self, hello}
“sleep”

Figure 5.7 Schematic diagram of Program 5.8

Chapter 5. Mapping Tuples with Polyadic Communications

 125

In loop process, there is no pattern in any of matches that can match such a tuple of
size 2. However, as there is a variable pattern in the last match, and as variable pattern
can match with any term, sent tuple message will be matched with the pattern variable
Y and consequently atom sleep will be returned as the result of the loop process.

5.7.1(b) Translation in the π-calculus

According to rule (21),

main()=new self(start(self))

TrPIfundef(self, start() ->
 Loop_Pid=spawn(loop, []),
 Loop_Pid ! {self(), hello})

Initially, BNSRAV is empty i.e. BNSRAV={ }

(20A)->(11)->(25) (10A) (22) (5) (3)
=start(self) = new lpid, p, loop_res, start_send_res(p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid).(Loop_Pid´<self, hello>.nil ||
 start_send_res´<self, hello>.nil))

Finally, BNSRAV={ Loop_Pid }

TrPIfundef(self, loop() ->
receive

 {From, Message, request} -> do_works;
 stop -> terminate;
 Y -> sleep
 end.)

Initially, BNSRAV is empty i.e. BNSRAV={ }

(20A)->(14)-> (26D)->(5)(3)(4)
=loop(self)=self(From, Message, input_pat3).[input_pat3=request]
 loop_res´<do_works>.nil + self(input_pat1).[input_pat1=stop]
 loop_res´<terminate>.nil + self(Y).loop_res´<sleep>.nil

Finally, BNSRAV={From, Message, Y}

Chapter 5. Mapping Tuples with Polyadic Communications

 126

5.7.1(c) The π-Model

From Section 5.7.1(b), the π-model of Program 5.8 can be written as follows:

main()=new self(start(self))

start(self) = new lpid, p, loop_res, start_send_res(p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid).(Loop_Pid´<self, hello>.nil ||
 start_send_res´<self, hello>.nil))

loop(self)=self(From, Message, input_pat3).[input_pat3=request]
 loop_res´<do_works>.nil + self(input_pat1).[input_pat1=stop]
 loop_res´<terminate>.nil + self(Y).loop_res´<sleep>.nil

5.7.1(d) Observing Behavior in π-calculus: Send rule (25) cannot provide full
 PIErlang Receive Semantics

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(start(self))

(substituting RHS of process start(self))
=>new lpid, p, loop_res, start_send_res(p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid).(Loop_Pid´<self, hello>.nil ||
 start_send_res´<self, hello>.nil))

(react on p)->(Omitting nil process)
=>new lpid, p, loop_res, start_send_res(
 // loop process
 loop(lpid) || loop_res(dummy).nil ||
 // start process
 (lpid´<self, hello>.nil || start_send_res´<self, hello>.nil))

(substituting RHS of process loop(self) with self -> lpid)
=>new lpid, p, loop_res, start_send_res(
 // loop process
 (lpid(From, Message, input_pat3).[input_pat3=request]
 loop_res´<do_works>.nil + lpid(input_pat1).[input_pat1=stop]
 loop_res´<terminate>.nil + lpid(Y).loop_res´<sleep>.nil) || loop_res(dummy).nil
 || // start process
 (lpid´<self, hello>.nil || start_send_res´<self, hello>.nil))

Chapter 5. Mapping Tuples with Polyadic Communications

 127

Now we see that start process sends a tuple of message(tuple size 2) to the loop
process with lpid´<self, hello>.nil. But in loop process, there is no subprocess that
can have a react (receive action along channel lpid) on channel lpid for tuple size 2,
consequently, the system will be in an infinity deadlock state. According to the
PIErlang semantics, this sent tuple of message should be received with the 3rd
subprocess of the loop process (3rd match lpid(Y).loop_res´<sleep>.nil). As a result,
atom sleep should be returned as the result of the loop process. We have found that
this problem has been arisen due to the insufficiency of send rule (25). Therefore, a
modification of this rule is required(cf. Section 5.7.2).

5.7. 2 A Modification to Send Rule (25)

To overcome the problem of the semantic matching between PIErlang and π-calculus
that arises in Section 5.7.1(d) for Program 5.8, rule (25) is modified as follows:

TrPIexp(self, A !{A1, A2,.., An})=(((TrPIarg(A))´<TrPIarg(A1), …., TrPIarg(An)>.nil +
(TrPIarg(A))´<unknownTuple>.nil) || (res´ < TrPIarg(A1), .., TrPIarg(An)> .nil +
res´<unknownTuple>.nil) -(25A)

Along with the previous definition, two more subprocesses are added using non-
deterministic choices. Whenever a tuple-based message is sent, a name unknownTuple
is also sent non-deterministically so that the problem arisen in Section 5.7.1(d) can be
solved. The reason of sending the tuple of message along the res channel has already
been mentioned Section 5.4. For the same reason as of first non-determinism, name
unknownTuple is also sent along the res channel as the second non-determinism.

5.7. 3. PIErlang Program 5.8: Send Rule(25A) Sounds Correct

In this section, rule (25A) is used for translation mapping Program 5.8 and found that
translated model with rule (25A) overcomes the problem that arisen in Section
5.7.1(d).

5.7.3(a) Execution in PIErlang Compiler

The execution mechanism of Program 5.8 in PIErlang compiler is described in
Section 5.7.1(a).

Chapter 5. Mapping Tuples with Polyadic Communications

 128

5.7.3(b) Translation in the π-calculus

According to rule (21),

main()=new self(start(self))

TrPIfundef(self, start() ->
 Loop_Pid=spawn(loop, []),
 Loop_Pid ! {self(), hello})

Initially, BNSRAV is empty i.e. BNSRAV={ }

(20A)->(11)->(25A) (10A) (22) (5) (3)
=start(self) = new lpid, p, loop_res, start_send_res(p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid).((Loop_Pid´<self, hello>.nil +
 Loop_Pid´<unknownTuple>.nil) || (start_send_res´<self, hello>.nil +
 start_send_res´<unknownTuple>.nil))

Finally, BNSRAV={Loop_Pid }

Translation for the loop process is same as of Section 5.7.1(b).

5.7.3(c) The π-Model

From Section 5.7.3(b), the modified π-model of Program 5.8 can be written as
follows:

main()=new self(start(self))

start(self) = new lpid, p, loop_res, start_send_res(p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid).((Loop_Pid´<self, hello>.nil +
 Loop_Pid´<unknownTuple>.nil) || (start_send_res´<self, hello>.nil +
 start_send_res´<unknownTuple>.nil))

loop(self)=self(From, Message, input_pat3).[input_pat3=request]
 loop_res´<do_works>.nil + self(input_pat1).[input_pat1=stop]
 loop_res´<terminate>.nil + self(Y).loop_res´<sleep>.nil

5.7.3(d) Observing Behavior in π-calculus

To observe the model behavior in π-calculus, we have to start from the main()

process.

Chapter 5. Mapping Tuples with Polyadic Communications

 129

main()=new self(start(self))

(substituting RHS of process start(self))
=>new lpid, p, loop_res, start_send_res(p´<lpid>.nil || loop(lpid) ||
 loop_res(dummy).nil || p(Loop_Pid).((Loop_Pid´<self, hello>.nil +
 Loop_Pid´<unknownTuple>.nil) || (start_send_res´<self, hello>.nil +
 start_send_res´<unknownTuple>.nil))

(react on p)->(Omitting nil process)
=>new lpid, p, loop_res, start_send_res(
 // loop process
 loop(lpid) || loop_res(dummy).nil
 || // start process
 ((lpid´<self, hello>.nil + lpid´<unknownTuple>.nil) || (start_send_res´<self,
 hello>.nil + start_send_res´<unknownTuple>.nil))

(substituting RHS of process loop(self) with self -> lpid)
=>new lpid, p, loop_res, start_send_res(
 // loop process
 (lpid(From, Message, input_pat3).[input_pat3=request]
 loop_res´<do_works>.nil + lpid(input_pat1).[input_pat1=stop]
 loop_res´<terminate>.nil + lpid(Y).loop_res´<sleep>.nil) || loop_res(dummy).nil
 || // start process
 ((lpid´<self, hello>.nil + lpid´<unknownTuple>.nil) || (start_send_res´<self,
 hello>.nil + start_send_res´<unknownTuple>.nil))

In contrast to Section 5.7.1(d), here we see that name unknownTuple is also sent along
channel lpid and in loop process, subprocess lpid(Y).loop_res´<sleep>.nil can now
have a react on lpid.

(react on lpid)
=>new lpid, p, loop_res, start_send_res(
 // loop process
 (loop_res´<sleep>.nil) || loop_res(dummy).nil
 || // start process
 ((nil) || (start_send_res´<self,
 hello>.nil + start_send_res´<unknownTuple>.nil))

As a result of applying react on channel lpid atom sleep is sent along the result
channel of the loop process thus, meeting the PIErlang semantics as of Section
5.7.1(a) and solving the problem of Section 5.7.1(d).

Chapter 5. Mapping Tuples with Polyadic Communications

 130

5.8 An Approach to Improve Tuple Expression Rule (24)

The problem cited in Section 5.7 for the case of send rule(25), could also be arisen in
the case of tuple rule (24) of Section 5.3, especially, when a tuple expression is used
as the case head of the case expression. If the sent tuple message of Program 5.8 is
used in case head then the same problem will be found as of Section 5.7.1(d). To
overcome this problem, rule (24) is modified as follows:

TrPIexp(self, {A1, A2,.., An})= res´<TrPIarg(A1), .., TrPIarg(An)> .nil +
 res´<unknownTuple>.nil -(24A)

5.9 An Alternative Approach for Match Rule (26D)

 In Program 5.8, a tuple of size 2 is sent to the loop process. On the other hand, loop
process is not ready to receive a tuple of size 2, rather it can receive a tuple of size 3
or a single atom stop or any message (as variable is used as pattern). However, we see
that there is some sort of similarity between the sending message and the pattern of
the match(s) with respect to their types. A tuple is sent by the start process(sender
process) and in loop process(receiver process) there is also a tuple pattern in the first
match. We consider that sent message can have a pattern matching with the pattern of
the first match with respect to their types. Considering such situations, we have
proposed an alternative approach for rule (26D) as follows:

In rule(26E), we see that whenever a tuple is used as pattern in the matches, a
monadic receive action is used with non-deterministic choice to receive a name in
Tuple and if the received name is unknownTuple, the body expression associated with
the tuple pattern will be evaluated. We already know that name unknownTuple can be
sent by the send rule (25A) or tuple expression rule (24A). However, using this rule
there is possibility of breaking the semantics of PIErlang in translated π-model.
Therefore, we will not use rule (26E) in the subsequent translation mappings.

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIexp(self, E)
 + self(Tuple).[Tuple = unknownTuple] TrPIexp(self, E) ;
 if Pi∈{Atoms, Numbers} or if Pi∈{Variables} and name Pi∈BNSRAV
 -(26E)
self(…,X,…)… TrPIexp(self, E) ; if Pi∈{Variables}, where Pi is a
variable X and name X∉BNSRAV

TrPImatch(self, {P1,……,Pn} -> E) =

Chapter 5. Mapping Tuples with Polyadic Communications

 131

5.10 TrPIs at a Glance

Only the most promising final outcomes of the rules discussed in this chapter are
mentioned in this section.

TrPIexp: Name X Expression -> Process

TrPIexp(self, self()) := res´<self >.nil -(23)

TrPIexp(self, {A1, A2,.., An})= res´<TrPIarg(A1), .., TrPIarg(An)> .nil +
 res´<unknownTuple>.nil -(24A)

TrPIexp(self, A !{A1, A2,.., An})=(((TrPIarg(A))´<TrPIarg(A1), …., TrPIarg(An)>.nil +
(TrPIarg(A))´<unknownTuple>.nil) || (res´ < TrPIarg(A1), .., TrPIarg(An)> .nil +
res´<unknownTuple>.nil) -(25A)

TrPImatch: Name X Match -> Process

TrPIarg: Argument -> Name

TrPIarg(self()) : = self -(22)

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIexp(self, E) ;
if Pi∈{Atoms, Numbers} or if Pi∈{Variables} and name Pi∈BNSRAV
 -(26D)
self(…,X,…)… TrPIexp(self, E) ; if Pi∈{Variables}, where Pi is a
variable X and name X∉BNSRAV

TrPImatch(self, {P1,……,Pn} -> E) =

Where BNSRAV ={ X | y(..,X,..) is a receive action in π-calculus and X is a
 variable in PIErlang function for which X is considered as a name in π-calculus.}

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIexp(self, E)
 + self(Tuple).[Tuple = unknownTuple] TrPIexp(self, E) ;
 if Pi∈{Atoms, Numbers} or if Pi∈{Variables} and name Pi∈BNSRAV
 -(26E)
self(…,X,…)… TrPIexp(self, E) ; if Pi∈{Variables}, where Pi is a
variable X and name X∉BNSRAV

TrPImatch(self, {P1,……,Pn} -> E) =

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 132

Chapter 6

Mapping Nested Tuples, Lists and Arithmetic Expressions

In this chapter, the uses of nested tuples, lists and arithmetic expressions are presented
and for each of the syntactic constructs a translation mapping rule in π-calculus is
provided. Additionally, one program(using these constructs) has been used to get
corresponding system model in π-calculus by applying translation mapping rules.
Furthermore, it is shown that gained π-calculus model shows the same behavior as it
could be expected from its corresponding Erlang program.

6.1 PIErlang-02 Syntax

In Chapter 5, we have discussed the translation mapping based on the PIErlang-01
which is an extension of PIErlang-00 for supporting uses of non-nested tuples as an
expression, message of send expression and patterns of matches of receive and case
expressions. In this chapter, we have modified PIErlang-01 for supporting nested
tuples and we have renamed PIErlang-01 with PIErlang-02.

6.1 PIErlang-02 Syntax
6.2 Data Types
6.3 Arithmetic Expressions
6.4 Lists
6.5 Nested Tuples
6.6 Send Expression
6.7 Matches
6.8 PIErlang Program 6.1: A Different Approach
 6.8(a) Execution in PIErlang Compiler
 6.8(b) Translation in the π-calculus
 6.8(c) The π-Model

 6.8(d) Observing Behavior in π-calculus

-132
-133
-134
-135
-135
-135
-136
-136
-137
-137
-139
-139

⇒

T
able of C

ontents

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 133

In this modified version, Lists are also used in various contexts. Syntactic constructs
of PIErlang-02 are presented in Figure 6.1.

In the following sections, we will gradually discuss the corresponding π-calculus
mapping for each of the syntactic constructs of PIErlang-02. Unless otherwise
modified or stated clearly previous translation mapping rules (rules (1) to (26E)) of
Chapter 4 and Chapter 5 will be used here when necessary.

6.2 Data Types

In Section 4.2, translation mapping rules for Data Types have been discussed.
Although the translation mapping rules (3) and (4) for atoms are used unchanged,
rules (1) & (2) for integers and (1A) and (2A) floats have been modified as follows:

 Program P ::= F+ ; E
 Function Definition F ::= f(X1, X2, ….., Xn) -> E ;n>=0

 Expression E ::= n | a | X
 | {U1,..,Un} ;n>=0
 | E1 + E2 | E1 - E2 | E1 * E2 | E1 / E2
 | [A1 | A2] [A1,..,An] ; n>=0
 | X = E1, E2 | X = E | E1, E2
 | self() | f(U1,..,Un) | spawn(f, [U1,..,Un]) ;n>=0
 | A ! V | A !{U1,..,Un} ;n>=0
 | receive M1;.. ; Mn end | case E of M1;.. ; Mn end ;n>=0

 Match M :: = V -> E | {P1,..,Pn}->E ;n>=0
 Pattern P :: = n | a | X | {A1,.., An} | [A1 | A2] | [A1,..,An] ;n>=0
 Argument A :: = n | a | X | self()
 Argument U :: = n | a | X | self() | {A1,.., An}| [A1 | A2] | [A1,..,An] ;n>=0
 Argument V :: = n | a | X | self()| [A1 | A2] | [A1,..,An] ;n>=0

 n ∈ Numbers ;
 a, f ∈ Atoms ;
 X, X1,..,Xn ∈Variables

 Figure 6.1 PIErlang-02(added syntactic constructs are marked with boldface)

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 134

TrPIarg(n)=unknownInteger -(27)

TrPIexp(self, n)=res´<TrPIarg(n)>.nil

 (27)
 = res´<unknownInteger>.nil -(28)

TrPIarg(fl)=unknownFloat -(27A)

TrPIexp(self, fl)= res´ <TrPIarg(fl)>.nil
 (27A)

 = res´<unknownFloat>.nil -(28A)

In Chapter 4, integers and floats have been considered in the same way where their
translations to π-calculus is just a name unknown while used as arguments and name
unknown is passed along the res channel while used as expressions. Here integers and
floating points numbers are treated separately as we see in the above rules.

6.3 Arithmetic Expressions

In this section, we have introduced the uses of mathematical operators (+, -, * and /)
on atomic numerical expressions as follows:

TrPIarg(E1 + E2)= TrPIarg(E1 - E2)= TrPIarg(E1 * E2)=TrPIarg(E1 / E2)=unknownInteger,
 if TrPIarg(E1)=unknownInteger and TrPIarg(E2)=unknownInteger -(29)

TrPIexp(E1 + E2)= TrPIexp(E1 - E2)= TrPIexp(E1 * E2)
 = TrPIexp(E1 / E2)=res´<unknownInteger>.nil

 if TrPIarg(E1)=unknownInteger and TrPIarg(E2)=unknownInteger -(30)

TrPIarg(E1 + E2)= TrPIarg(E1 - E2)= TrPIarg(E1 * E2)=TrPIarg(E1 / E2)=unknownFloat,
 if TrPIarg(E1)=unknownFloat and/or TrPIarg(E2)=unknownFloat -(29A)
TrPIexp(E1 + E2)= TrPIexp(E1 - E2)= TrPIexp(E1 * E2)
 = TrPIexp(E1 / E2)=res´<unknownFloat>.nil,

 if TrPIarg(E1)=unknownFloat and/or TrPIarg(E2)=unknownFloat -(30A)

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 135

6.4 Lists

From PIErlang-02 syntax (Figure 6.1) above, it is found that Lists are used as simple
expressions, as arguments of function calls and spawn calls, as an atomic message of
send expression, as an element of the tuple message of send expression, as an atomic
pattern of the matches of receive and case expressions and as an element of the tuple
pattern of case and receive expressions. Lists are treated as arguments except the case
where they are used as simple expressions. We have not taken into consideration to
support the full semantics of Lists in translated π-calculus system. Therefore, we have
considered that if there is any instance of Lists, it will be translated to a name in π-
calculus while used as arguments and arguments translation will be sent along the res
channel while used as simple expression(s) as follows:

TrPIarg([])=emptyList -(31)

TrPIexp(self, [])=res´<emptyList>.nil -(32)

TrPIarg([A1,..,An])=unknownList -(31A)

TrPIexp(self, [A1,..,An])= res´<unknownList>.nil -(32A)

TrPIarg([A1 |A2])=unknownList -(31B)

TrPIexp(self, [A1 | A2])= res´<unknownList>.nil -(32B)

6.5 Nested Tuples

In Chapter 5, we have discussed the uses of non-nested tuples as simple expression, as
the message of send expression and pattern of matches of receive and case
expressions where the tuple element(s) could be only number(s), atom(s), variable(s)
and/or PID self(). In this section, our intention is to use nested tuple (at least 1-nested
tuple) in the contexts where non-nested tuples are used in Chapter 5.

TrPIarg({A1,..,An})=unknownTuple -(33)

TrPIexp(self, {U1,..,Un})= res´<TrPIarg(U1),..,TrPIarg(U1)>.nil +
 res´<unknownTuple>.nil -(24B)

6.6 Send Expression

In Section 4.4, send expression with atomic arguments has been discussed. In Sections
5.4 and 5.7, tuple based send expression has been discussed in details where atomic

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 136

elements such as numbers, atoms, variables and self() are used as the elements of the
tuple message. In this section, we have added lists and tuples as atomic message or as
elements of the tuple message used in the send expression. The modified rules are as
follows:

TrPIexp(self, A ! V)= (TrPIarg(A))´<TrPIarg(V)>.nil || res´<TrPIarg(V)>.nil -(9A)

TrPIexp(self, A ! {U1,..,Un})= ((TrPIarg(A))´<TrPIarg(U1),.., TrPIarg(Un) >.nil +
 (TrPIarg(A))´<unknownTuple>.nil) ||

 (res´<TrPIarg(U1),.., TrPIarg(Un)>.nil +
 res´<unknownTuple>.nil) -(25B)

6.7 Matches

Tuple-based match rules (26D) and (26E) are also valid here with additional support
of allowing tuples and lists as the elements of the tuple pattern. Thus rule (26D) is
renamed as (26F) with tuple element P :: = n | a | X | {A1,.., An} | [A1 | A2] | [A1,..,An]

Single pattern match rule TrPImatch(self, V -> E) is developed to fit with the added
syntactic constructs of send rule (25B) as follows:

TrPImatch(self, V -> E)=self(input_pat).[input_pat=TrPIarg(V)] TrPIexp(self, E)

 Where V::= n | a | self()| [A1 | A2] | [A1,..,An] ;n>=0 -(34)

6.8 PIErlang Program 6.1: A Different Approach

Let us consider a simple example as follows:

start() ->
 Loop_Pid=spawn(loop, []),
 Loop_Pid ! {[X | Allowed], hello, {do, die}}.

loop() ->

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIexp(self, E) ;
if Pi∈{Atoms, Numbers} or if Pi∈{Variables} and name Pi∈BNSRAV
 -(26F)
self(…,X,…)… TrPIexp(self, E) ; if Pi∈{Variables}, where Pi is a
variable X and name X∉BNSRAV

TrPImatch(self, {P1,…,Pn} -> E) =

Where BNSRAV ={ X | y(..,X,..) is a receive action in π-calculus and X is a
 variable in PIErlang function for which X is considered as a name in π-calculus.}

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 137

 receive
 { [Z | Worked], hello, {Die, Do}} -> go_market;
 stop -> terminate;
 Y -> sleep

 end.

Program 6.1. Simple Message passing example

6.8(a) Execution in PIErlang Compiler

In PIErlang-02, we assume that compiler can perform pattern matching against the
types of the elements of nested tuple-based terms. As usual, spawn call causes the
start process and the loop process to be executed in parallel. A nested tuple message
{[X, Allowed], hello, {do, die}} is sent to the loop process. In the loop process, there
is no such matching pattern for having a successful match with the sent tuple message.
However, PIErlang then tries to have similarity between the types of the elements of
the tuple for pattern matching. Consequently, PIErlang will consider that a tuple
message({list, hello, tuple}) is sent to the loop process where the first element of the
tuple is a list, second is an atom hello and third element is again a tuple. PIErlang
compiler will try to have such a tuple in loop process matches and if there is any such
tuple pattern, a successful pattern matching will be occurred. We see that in the loop
process, there is a pattern {[Z | Worked], hello, {Die, Do}} which will be treated by
PIErlang as {list, hello, tuple}. As a result, a successful pattern matching will be found
and go_market will be returned as a result of the loop process.

6.8(b) Translation in the π-calculus

According to rule (21),
main()=new self(start(self))

TrPIexp(self, start() ->
 Loop_Pid=spawn(loop, []),
 Loop_Pid ! {[X | Allowed], hello, {do, die}})

Initially, BNSRAV is empty i.e. BNSRAV={ }

(20A)->(11)->(10A)
=start(self)=new lpid, p, loop_res (p´<lpid>.nil || loop(lpid) || loop_res(dummy).nil ||
 p(Loop_Pid).(Loop_Pid ! {[X | Allowed], hello, {do, die}}))

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 138

(25B)
=new lpid, p, loop_res (p´<lpid>.nil || loop(lpid) || loop_res(dummy).nil ||
 p(Loop_Pid).((Loop_Pid´<TrPIarg([X | Allowed]), TrPIarg(hello), TrPIarg({do,
 die})>.nil + Loop_Pid´<unknownTuple>.nil) || (res´<TrPIarg([X | Allowed]),
 TrPIarg(hello), TrPIarg({do, die})>.nil + res´<unknownTuple>.nil)))

 NSRAV={ Loop_Pid }

(31A) (3) (33)
=new lpid, p, loop_res (p´<lpid>.nil || loop(lpid) || loop_res(dummy).nil ||
 p(Loop_Pid).((Loop_Pid´<unknownList, hello, unknownTuple>.nil +
 Loop_Pid´<unknownTuple>.nil) || (res´<unknownList, hello, unknownTuple>.nil +
 res´<unknownTuple>.nil)))

BNSRAV={Loop_Pid }

TrPIexp(self, loop() ->
 receive

 {[Z | Worked], hello, {Die, Do}} -> go_market;
 stop -> terminate;
 Y -> sleep

 end)

Initially, BNSRAV is empty i.e. BNSRAV={ }

(20A)->(14)
=loop(self)=TrPImatch(self, {[Z | Worked], hello, {Die, Do}} -> go_market) +

 TrPImatch(self, stop -> terminate) + TrPImatch(self, Y -> sleep)

(26F)
= self(input_pat1, input_pat2, input_pat3).[input_pat1=TrPIarg([Z | Worked])]

[input_pat2=TrPIarg(hello)] [input_pat2=TrPIarg({Die, Do})]
loop_res´<go_market>.nil + self(input_pat4).[input_pat4=stop]
loop_res´<terminate>.nil + self(Y).loop_res´<sleep>.nil

BNSRAV={Y}

(31A) (3) (33)
= self(input_pat1, input_pat2, input_pat3).[input_pat1=unknownList] [input_pat2=
hello] [input_pat3=unknownTuple] loop_res´<go_market>.nil +
self(input_pat4).[input_pat4= stop] loop_res´<terminate>.nil + self(Y).
loop_res´<sleep>.nil

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 139

BNSRAV={Y}

6.8(c) The π-Model

From Section 6.8(b), the π-model of Program 6.1 can be written as follows:
main()=new self(start(self))

start(self)= new lpid, p, loop_res (p´<lpid>.nil || loop(lpid) || loop_res(dummy).nil ||
 p(Loop_Pid).((Loop_Pid´<unknownList, hello, unknownTuple>.nil +
 Loop_Pid´<unknownTuple>.nil) || (res´<unknownList, hello, unknownTuple>.nil +
 res´<unknownTuple>.nil)))

loop(self)= self(input_pat1, input_pat2, input_pat3).[input_pat1=unknownList]
 [input_pat2= hello] [input_pat3=unknownTuple] loop_res´<go_market>.nil +
 self(input_pat4).[input_pat4= stop] loop_res´<terminate>.nil + self(Y).
 loop_res´<sleep>.nil

6.8(d) Observing Behavior in π-calculus

To observe the model behavior in π-calculus, we have to start from the main()

process.

main()=new self(start(self))

(process call start(self))
=new self, lpid, p, loop_res(p´<lpid>.nil || loop(lpid) || loop_res(dummy).nil ||
 p(Loop_Pid).((Loop_Pid´<unknownList, hello, unknownTuple>.nil +
 Loop_Pid´<unknownTuple>.nil) || (res´<unknownList, hello,
 unknownTuple>.nil + res´<unknownTuple>.nil)))

(react on p) ->(omitting nil process)
=new self, lpid, p, loop_res (
 // loop process
 loop(lpid) || loop_res(dummy).nil ||
 // start process
 ((lpid´<unknownList, hello, unknownTuple>.nil + lpid´<unknownTuple>.nil) || (
 res´<unknownList, hello, unknownTuple>.nil + res´<unknownTuple>.nil)))

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 140

(process call loop(lpid) with self -> lpid)
(*)=new self, lpid, p, loop_res (
 // loop process
 (lpid(input_pat1, input_pat2, input_pat3).[input_pat1=unknownList]
 [input_pat2=hello] [input_pat3=unknownTuple] loop_res´<go_market>.nil +
 lpid(input_pat4).[input_pat4= stop] loop_res´<terminate>.nil +
 lpid(Y).loop_res´<sleep>.nil) || loop_res(dummy).nil ||
 // start process
 ((lpid´<unknownList, hello, unknownTuple>.nil + lpid´<unknownTuple>.nil)
 || (res´<unknownList, hello, unknownTuple>.nil + res´<unknownTuple>.nil)))

(react on lpid)
=new self, lpid, p, loop_res (
 // loop process
 ([unknownList=unknownList] [hello=hello] [unknownTuple=unknownTuple]
 loop_res´<go_market>.nil +
 // start process
 ((nil) || (
 res´<unknownList, hello, unknownTuple>.nil + res´<unknownTuple>.nil)))

As a consequence of successful name matching ([unknownList =unknownList] [hello
= hello] [unknownTuple =unknownTuple]) go_market is sent along the loop_res
channel (result channel of loop process). In Section 6.8(a), we see the same thing in
PIErlang compiler. However, as the choices among matches are non-deterministic,
there is also another possibility of having a react on lpid.

Again consider from (*) above,

=new self, lpid, p, loop_res (
 // loop process
 (lpid(input_pat1, input_pat2, input_pat3).[input_pat1=unknownList] [input_pat2=
 hello] [input_pat3=unknownTuple] loop_res´<go_market>.nil +
 lpid(input_pat4).[input_pat4= stop] loop_res´<terminate>.nil +
 lpid(Y).loop_res´<sleep>.nil) || loop_res(dummy).nil ||
 // start process
 ((lpid´<unknownList, hello, unknownTuple>.nil + lpid´<unknownTuple>.nil) ||
 (res´<unknownList, hello, unknownTuple>.nil + res´<unknownTuple>.nil)))

Chapter 6. Mapping Nested Tuples, Lists and Arithmetic Expressions

 141

(react on lpid, 2nd non-determinism loop process and 3rd of start process)
=new self, lpid, p, loop_res (
 // loop process
 (loop_res´<sleep>.nil) || loop_res(dummy).nil ||
 // start process
 ((nil) || (
 res´<unknownList, hello, unknownTuple>.nil + res´<unknownTuple>.nil)))

As a result sleep is sent along loop_res channel thus, breaking PIErlang semantics. An
approach to avoid such non-determinism among matches has been presented in
Section 4.9 and can also be applied here.

Chapter 7. Mapping Guards

 142

Chapter 7

Mapping Guards

In this chapter, Guards are introduced and translation mapping supporting guards are
presented. As guards can be trivially mapped with the name matching/mismatching
feature of π-calculus we discussed in the earlier chapters, we have not presented any
example using guards in this chapter.

7.1 PIErlang-03 Syntax

In Chapter 6, we have discussed the translation mapping based on PIErlang-02
syntactic constructs. In this chapter, PIErlang-02 is enriched to support uses of
Guards in function definitions and in matches of receive and case expressions.
Moreover, if expression is added in which Guard(s) is/are used.

7.2 Guards

Guards are conditions which have to be fulfilled before a clause is chosen. The
reserved word when introduces a guard. Fully guarded clauses can be re-ordered. All
variables used in a guards must be bound.

TrPIguard(self, when C1,..,Cn) := [C1]…[Cn] ; n>=1

TrPIcondition(self, V1 Op Vn) :=TrPIarg(V1) Op TrPIarg(Vn)

7.1 PIErlang-03 Syntax
7.2 Guards
 7.2.1 Guards in Function Definition
 7.2.2 Guards in Matches
7.3 IF Expression

-142
-142
-143
-144
-144

Table of Contents ⇒

Chapter 7. Mapping Guards

 143

7.2.1 Guards in Function Definition

When a function definition is augmented with guards, they are placed on the right
hand side of the function definition in π-calculus translation. Thus, rule(20) is
modified as follows:

TrPIfundef(self, f(X1,..., Xn) [when G]->E) :=
 f(self, X1,..., Xn) =TrPIguard(self, when G)TrPIexp(self, E) -(20B)

 Program P ::= F+ ; E
 Function Definition F ::= f(X1, X2, ….., Xn) [when G] -> E ;n>=0

 Expression E ::= n | a | X
 | {U1,..,Un} ;n>=0
 | E1 + E2 | E1 - E2 | E1 * E2 | E1 / E2
 | [A1 | A2] [A1,..,An] ;n>=0
 | X = E1, E2 | X = E | E1, E2
 | self() | f(U1,..,Un) | spawn(f, [U1,..,Un]) ;n>=0
 | A ! V | A !{U1,..,Un} ;n>=0
 | receive M1;.. ; Mn end | case E of M1;.. ; Mn end ;n>=0
 | if G1->E1;..;Gn ->En end ; n>=0

 Match M :: = V[when G] -> E | {P1,..,Pn}[when G]->E ;n>=0
 Pattern P :: = n | a | X | {A1,.., An} | [A1 | A2] | [A1,..,An] ;n>=0
 Argument A :: = n | a | X | self()
 Argument U :: = n | a | X | self() | {A1,.., An}| [A1 | A2] | [A1,..,An] ;n>=0
 Argument V :: = n | a | X | self()| [A1 | A2] | [A1,..,An] ;n>=0
 Guards G :: = C1,..,Cn ;n>=0
 Condition C :: = V1 Op Vn where Op ∈ {=, !=}
 n ∈ Numbers ;
 a, f ∈ Atoms ;
 X, X1,..,Xn ∈Variables

 Figure 7.1 PIErlang-03(added syntactic constructs are marked with boldface)

Chapter 7. Mapping Guards

 144

7.2.2 Guards in Matches

In Erlang, a pattern can optionally be augmented with a guard for expressing
additional conditions on the term that is to be matched against the pattern. A guard
consists of a nonempty sequence of guard tests.

The guard tests have sub expressions which are guard expressions. When compared
with expressions both guard tests and guard expressions are syntactically restricted. In
PIErlang, full semantics of Guards have not been supported(cf. Figure 7.1). Rule (34)
can be modified as follows by supporting guards as follows:

TrPImatch(self, V[when G]-> E)=self(input_pat).[input_pat=TrPIarg(V)]
 TrPIguard(self, when G) TrPIexp(self, E)

V :: = n | a | self()| [A1 | A2] | [A1,..,An] ;n>=0 -(34A)

Similarly, with guards, rule(26F) can be written as follows:

7.3 IF Expression

The if expression has the following syntax:

if G1->E1;..;Gn ->En end

The guards G1, … are evaluated sequentially. If a guard succeeds then the related
expression is evaluated. The result of the evaluation becomes the value of the if from.
If guards have the same form as function guards. While translating such if expression
in π-calculus, we have used non-determinism between the guard expressions as
follows provided that all variables used in guards are bound:

TrPIexp(self, if G1->E1;..;Gn ->Enend):= TrPIguard(self, G1)TrPIexp(self, E1 + ...
 + TrPIguard(self, Gn) TrPIexp(self, En) -(35)

self(…,input_pati,…) … [input_pati =TrPIarg(Pi)]…TrPIguard(self, when
G)TrPIexp(self, E) ; if Pi∈{Atoms, Numbers} or if Pi∈{Variables} and name
Pi∈BNSRAV
 -(26G)
self(…,X,…)… TrPIguard(self, when G) TrPIexp(self, E) ; if Pi∈{Variables},
where Pi is a variable X and name X∉BNSRAV

TrPImatch(self, {P1,……,Pn}[when G] -> E) =

Chapter 8. Model Checking with HAL

 145

Chapter 8

Model Checking with HAL

In this chapter, HAL, an automata-based verification environment for the π-calculus is
introduced. The π-models gained in the previous chapters can now be verified with
HAL. The HAL system is able to interface with several model checking tools to
determine whether or not certain properties hold for a given specification. However,
in this chapter, we have only provided some LTS of some certain π-models. A
detailed about working with HAL can be found in [9, 10].

8.1 Introduction

History Dependent automata (HD-automata in short) have been proposed in [38, 39]
as a new effective model for name passing calculi. Like ordinary automata, HD-
automata are made out of states and labeled transitions; their peculiarity resides in the
fact that states and transitions are equipped with names which are no longer dealt with
as syntactic components of labels, but become explicit part of the operational model.
This allows one to model explicitly name creation/deallocation and name extrusion
and we know these are the distinguished mechanisms of name passing calculi.

The HD-Automata Laboratory (HAL) is an integrated tool set for the specification,
verification and analysis of concurrent systems. The HAL toolkit is the component of
JACK[40] which provides facilities to deal with π-calculus by exploiting HD-
automata. The goal of HAL is to verify properties of mobile systems specified in the
π-calculus. Exploiting HAL facilities, π-calculus specifications are translated first into

8.1 Introduction
8.2 HAL compatible π-calculus
8.3 HAL System Overview
8.4 HAL Commands
8.5 LTS from π-calculus Models
 8.5.1 LTS of Program 5.1
 8.5.2 LTS of Program 4.2
 8.5.3 LTS of Program 5.3
 8.5.4 LTS of Program 5.4

-145
-146
-147
-147
-148
-148
-149
-150
-150

Table of Contents ⇒

Chapter 8. Model Checking with HAL

 146

HD-automata and then in ordinary automata. Hence, the JACK bisimulation checkers
can be used to verify (strong and weak) bisimilarity. Automata minimization,
according to weak bisimulation is also possible. HAL supports verification of logical
formulae expressing properties of the behavior of π-calculus specifications. The
ACTL[41] model checker provided by JACK can be used for verifying properties of
π-calculus specifications, after that the π-logic formulae expressing the properties
have been translated into ACTL formulae. The complexity of the model checking
algorithm depends on the construction of the state space of the π-calculus agent to be
verified, which is, in the worst case, exponential in the syntactic size of the agent.

8.2 HAL compatible π-calculus

The syntax of π-calculus agents supported by HAL is shown in Figure 8.1, where we
use x to denote generic names and A to denote agent identifiers.

Prefixes (input, output, tau, restriction and matching) take precedence on
nondeterministic composition, which in turn takes precedence on parallel
composition.

Process: π::= nil Deadlock agent(Nil)

 α.π Prefix

 π1 | π2 Parallel composition

 | (π1,..,πn) Parallel composition

 π1 + π2 Nondeterministic composition

 + (π1,..,πn) Nondeterministic composition

 (x) π Restriction

 [x=y]π Name matching

 A(x1,...,xn) Agent identifier
 (π) Parenthesis

Figure 8.1 The π-calculus syntax compatible with HAL

System: S ::= Q+
Process Definition: Q::=A(x1, ..,xn)= π (where i! j =>xi ! xj) ; n>=0

Action Prefixes: α::= x?(y) Input

 x!y Output
 tau Silent

Chapter 8. Model Checking with HAL

 147

 8.3 HAL System Overview

In the current implementation, the HAL environment consists essentially of five
modules(cf. Figure 8.2): three modules perform the translations from π-calculus
agents to HD-automata (pi-to-hd), from HD-automata to ordinary automata (hd-to-
aut) and from π- logic formulae to ordinary ACTL formulae (pl-to-ACTL). The fourth
module (hd reduce) provides routines that manipulate the HD automata. The fifth
module is basically the JACK environment which works at the level of ordinary
automata and performs the standard operations on them like behavioral verification
and model checking.

8.4 HAL Commands

HAL reads commands from the standard input. At the moment, it accepts the
following commands:

Graphical User Interface(GUI)

From π-calculus agent
to HD-automata

HD-automata
reduction

π-calculus agent

HD-automaton

From HD-automata to
ordinary automata

Automata minimization

From π-logic formulae
to ACTL

JACK toolset

π-logic formula

Model checking

Behavioural verification

Graph editing

HD-automaton

 Ordinary
automaton

ACTL formula

Figure 8.2 The logical architecture of HAL environment.

Chapter 8. Model Checking with HAL

 148

define A(x1,..,xn) = π

This command defines a π-calculus agent. A is the identifier that is associated to the
agent. x1,..,xn are the formal parameters and π is the body of the agent(cf. Figure 8.1).

build A

This command builds the HD-automaton for the agent corresponding to identifier A.
The HD-automaton is saved in file A.hd.

 const x

This command declares name x as a constant name. Constant names cannot be
received by an agent as values of input transitions.

8.5 LTS from π-calculus Models

In this section, some π-models are used to get LTS from HAL.

8.5.1 LTS of Program 5.1

HAL compatible π-model of Program 5.1 is as follows:

define foo(self)=(send_res)(receive_res)(stop)(terminate)(self!stop.nil | send_res!
 stop.nil | send_res?(dummy).(self?(input_pat).[input_pat=stop]
 receive_res ! terminate . nil))

define main()=(self)(foo(self))

build main
build foo

The LTSs of Program 5.1 are as follows:

 (a) (b)

Figure 8.3 LTS of Program 5.1 (a) main process, (b) foo process

Chapter 8. Model Checking with HAL

 149

8.5.2 LTS of Program 4.2

HAL compatible π-model of Program 4.2 is as follows:

define s1(self)=(msg_a) (msg_c) (self ? (input_pat1).[input_pat1=msg_a]s2(self) +
 self ? (input_pat2).[input_pat2=msg_c]s3(self))

define s2(self)=(msg_x) (msg_h) (self ? (input_pat1).[input_pat1=msg_x]s3(self) +
 self ? (input_pat2).[input_pat2=msg_h]s4(self))

define s3(self)=(msg_b)(msg_y)(self ? (input_pat1).[input_pat1=msg_b]s1(self) +
 self ? (input_pat2).[input_pat2=msg_y]s2(self))

define s4(self)=(msg_i) (self ? (input_pat).[input_pat=msg_i]s3(self))

define start(self)=(pid)(receiver_res) (p) (send_res)(msg_a) (p ! pid .nil | s1(pid) |
 receiver_res ? (dummy).nil | p ? (State_Pid). (State_Pid ! msg_a
 .nil | send_res ! msg_a .nil))

define main()=(self) (start(self))

build s1
build s2
build s3
build s4
build start
build main

(c)

(b)
(a)

Figure 8.4 LTS of Program 4.2 (a) start process, (b) s4 process (c) s1/s2/s3 process

Chapter 8. Model Checking with HAL

 150

8.5.3 LTS of Program 5.3

HAL compatible π-model of Program 5.3 is as follows:

define ping(self)=(po_pid)(p)(pong_res)(pong_send_res)(ping_res)(pong)(ping) (p !
 po_pid.nil | pong(po_pid)| pong_res ?(dummy).nil |?(Pong_ID).
 (Pong_ID!self. Pong_ID!ping.nil | pong_send_res ? (dummy).
 (self ?(input_pat).[input_pat=pong]ping_res ! pong.nil)))

define pong(self)=(ping)(pong)(pong_res)(self?(Ping_ID).self?(input_pat).
 [input_pat=ping](Ping_ID!pong.nil | pong_res!pong.nil))

define main()=(self) (ping(self))

build ping
build pong
build main

8.5.4 LTS of Program 5.4

HAL compatible π-model of Program 5.4 is as follows:

define loop(self)=(loop_send_res)(Message)(self?(From).self?(Message).
 From!Message.nil | loop_send_res! Message.nil |
 loop_send_res?(dummy).loop(self))

define start(self)=(lpid)(p)(loop_res)(hello)(start_send_res)(p!lpid.nil | loop(lpid)|
 loop_res?(dummy).nil | p?(Loop_Pid).(Loop_Pid!self.
 Loop_Pid!hello.nil | start_send_res!self.start_send_res!hello.nil))

define main()=(self)(start(self))

 (b) (a)

Figure 8.5 LTS of Program 5.3 (a) main/ping process, (b) pong process

Chapter 8. Model Checking with HAL

 151

build loop
build start
build main

With the recursive definition of loop process, it was not possible(there were infinite
states) to get LTS from HAL, therefore, we have use nil process in place of recursive
process loop. The new definition of loop process is as follows:

define loop(self)=(loop_send_res)(Message)(self?(From).self?(Message).
 From!Message.nil | loop_send_res! Message.nil |
 loop_send_res?(dummy).nil)

(a)

Figure 8.6 LTS of Program 5.4 (a) main process, (b) start process (c) loop process.

 (b)

(c)

Chapter 9. Conclusion

 152

Chapter 9

Conclusion

In this thesis work, we have tried to translate the programming language Erlang into
the π-calculus. We started from a restricted subset of Erlang and then gradually added
more syntactic constructs for translation mapping. However, Erlang is a full
programming language and it was beyond the scope of this thesis to consider all of its
facets. For instance, in the case of mailbox of a process, we have not kept the full
semantics (the ordering of messages in mailbox) of Erlang in the translated π-calculus
system. In this section, we will point out some hints how this could be done along
with some other hints of future works. Finally, we draw the conclusion with the
summary of this thesis work.

9.1 Future Works

We have used the asynchronous π-calculus as the target specification language but
one can model Erlang with the synchronous π-calculus too.

We have considered the spawn/2 function with two arguments; first argument is the
calling function name and second is the argument(s) of that calling function. One can
consider other variants of spawn e.g. spawn/3 and/or spawn/4 for translation mapping.

As we have used the asynchronous π-calculus, ordering of messages in the mailbox of
a process could not be respected. One could think of solving this problem. However,
we have proposed one possible technique to solve such ordering problem by
providing an abstract translation of such a send/receive subset of Erlang in
asynchronous π-calculus.

As messages are sent asynchronously, their corresponding sub-processes are working
in parallel with the receiving sup-process and thus, any of the sub-processes can
communicate with the receiving sup-process, thereby violating the order of the
messages in asynchronous π-calculus.

Message order is kept between two given processes in Erlang. To keep the message
order, we can introduce a different mechanism to model the flow of messages. This

9.1 Future Works
9.2 Summary

-152
-154

Table of Contents ⇒

Chapter 9. Conclusion

 153

mechanism is the Erlang’s mailbox. For each process pid, a mailboxpid can be assumed
according to Erlang semantics. A mailbox can keep any number of messages to one
given process and it keeps the track of the order in which they arrive. To keep such
semantics in translated π-calculus systems, one can develop a π-calculus
implementation of the mailbox which behaves as follows:

 TrPIexp(self, pid ! A, E) || mailboxpid(A1…An)

(react)
 =>TrPIexp(self, E) || mailboxpid(A1…An A) -(9.1)

TrPIexp(pid, X= receive Y ->Y end, E) || mailboxpid(A1…An)

(react)
=>TrPIexp(pid, E[X/A1])|| mailboxpid(A2…An) -(9.2)

TrPIexp(self, X = spawn(f, [A1, A2, ….., An]), E)
=new pid(TrPIexp(self, E[X/pid]) || TrPIexp(pid, f(A1,.., An)) || mailboxpid() -(9.3)

A sender process now transmits its message through the receiver’s mailbox. Messages
cannot switch order on the way. Of course, we need to spawn an inbox with each new
process as shown in spawn in rule (9.3) above.

If the concepts of rules (9.1), (9.2) and (9.3) can be implemented in π-calculus, the
ordering of messages could be kept from the sender’s point of view. If there is only
one match in receiving side, full semantics of send/receive mechanism of Erlang can
be kept in π-calculus. But if there are more than one matches in the receiving side for
the mailbox messages, we have used non-determinism between different matches with
rule (14). Due to the non-deterministic choices between different matches, again there
is a possibility of violating the order of the mailbox messages as any match could take
part with the mailbox message. We have already provided an approach of solving this
non-determinism in Section 4.9. Further improvements on this approach could be a
good future work.

We have not provided the techniques for translation mapping Lists semantically. One
can model such data structure in π-calculus using the similar approach mentioned here
in the case of mailbox.

The [after Time -> ActionTimeOut] of receive expression(cf. Section 2.6) can be
modelled with real-time π-calculus as an interesting future work.

9.2 Summary

Chapter 9. Conclusion

 154

We have presented how a programming language supporting concurrent and
distributed behaviors can be modelled to a specification language; from a complete
program to a system model. We used Erlang as our programming language and the π-
calculus as our target specification language and therefore, we have translated a
program written in Erlang to a system model in π-calculus. By means of using several
small examples, we have also shown that our translated π-models possess the same
behaviors as it could be expected from their corresponding Erlang programs. Once the
system model is achieved from Erlang program, it is possible to apply the model
checking techniques for this system with existing tools, thus, an automatic verification
of Erlang program is possible. The techniques we have applied here for translating an
Erlang program to a π-calculus model can be applied for any programming language
for gaining a model in the π-calculus. In some cases, where dynamic behavior of the
program is not so important, CCS is a good choice as a target specification language
and our developed methods can easily be reused or slightly modified to get a CCS
system from such programming languages.

References

 155

References

 [1] J. Armstrong, R. Virding, C. Wikström and M. Williams. Concurrent

Programming in Erlang. Prentice Hall, 2nd Edition, 1996.

 [2] T. Noll. Programming Concurrent Systems. Lecture Notes, RWTH Aachen
University, 2001.

 [3] T. Noll. Formal Model of Concurrency. Lecture Notes, RWTH Aachen
University, 2003.

 [4] G. Boudol. Asynchrony and the π-calculus. Technical report, INRIA, 1992.

 [5] CADP: http://www.inrialpes.fr/vasy/cadp/

 [6] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001.
European Association for Software Science and Technology (EASST)
Newsletter, 4:13–14, 2002.

 [7] Thomas Arts, Clara Benac Earle, and Juan José Sánchez Penas. Translating
Erlang to µCRL.In Proceedings of the International Conference on Application
of Concurrency to System Design (ACSD2004). IEEE Computer Society
Press, June 2004.

 [8] µCRL: http://homepages.cwi.nl/~mcrl/.

 [9] HAL: http://matrix.iei.pi.cnr.it/projects/JACK/hal.html.

[10] Gian-Luigi Ferrari, Stefania Gnesi, Ugo Montanari and Marco Pistore. A
model-checking verification environment for mobile processes. In Proc.
TOSEM’03, ACM Press, 2003, p: 440 – 473.

[11] Christian Wiklander. Verification of Erlang Programs Using SPIN. Master's
Thesis. Ericsson Computer Science Lab(CSLAB), 1999.

[12] Sriram K. Rajamani and Jakob Rehof. Conformance Checking for Models of
Asynchronous Message Passing Software. Proceedings CAV 02, International
Conference on Computer Aided Verification.

[13] Sagar Chaki, Sriram K. Rajamani and Jakob Rehof. Types as Models: Model
Checking Message-Passing Programs Microsoft Research Technical Report,
MSR-TR-2001-71, August 2001.

References

 156

[14] Sriram K. Rajamani and Jakob Rehof. A Behavioral Module System for the
Pi-Calculus. Proceedings SAS 01, Static Analysis Symposium, Paris, France,
July 2001. Springer LNCS 2126, 375-394.

[15] Behave: http://research.microsoft.com/behave/.

[16] P. Yang, C. R. Ramakrishnan, and S.A. Smolka, A Logical Encoding of the
pi-Calculus: Model Checking Mobile Processes Using Tabled Resolution.
Procedings of Fourth International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2003), Lecture Notes in
Computer Science, Springer-Verlag (Jan. 2003).

[17] G. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279-295, May, 1997.

[18] Hosung Song and Kevin J. Compton. Verifying pi -calculus Processes by
Promela Translation. Technical Report 2003. Department of Electrical
Engineering and Computer Science University of Michigan, Ann Arbor, MI
48109, USA.

[19] B. Victor and F. Moller. The Mobility Workbench — A tool for the π-
calculus. In Proc. CAV’94, LNCS 818. Springer Verlag, 1994.

[20] J.-C. Fernandez and L. Mounier. “On the fly” verification of behavioral
equivalences and preorders. In Proc. CAV’91, LNCS 575. Springer Verlag,
1991.

[21] MWB: http://www.it.uu.se/research/group/mobility/mwb.

[22] B. Victor. A Verification Tool for the Polyadic π-calculus. DoCS Licentiate
Thesis 94/50. Dept. of Computer Science, Uppsala University, May 1994.

[23] M. Dam. Model checking mobile processes. In E. Best, editor, CONCUR'93,
4th Intl. Conference on Concurrency Theory, Vol. 715 of Lecture Notes in
Computer Science, p. 22-36. Springer-Verlag, 1993. Full version in Research
Report R94:01, Swedish Institute of Computer Science, Kista, Sweden.

[24] CriSys: http://www.cs.umn.edu/crisys/index.html

[25] Ola Samuelsson and Anders Frank .A Graphical User Interface for Erlang.
Uppsala University master’s thesis, 1994.

[26] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren,

References

 157

Sven-Olof Nyström, Mikael Pettersson, and Robert Virding. Core Erlang 1.0
language specification. November 2000.

[27] Maurice Castro. Erlang in Real Time. RMIT University, 2001.

[28] VeriSoft: http://cm.bell-labs.com/who/god/verisoft/

[29] K. Havelund, T. Pressburger. Model Checking Java Programs Using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
STTT, 2(4) April 2000.

[30] SPIN. http://spinroot.com/spin/whatispin.html

[31] Open Source Erlang Distribution. Ericsson Software Technology AB, Erlang
Systems, 1999. http://www.erlang.org/

[32] Jonas Barklund and Robert Virding. Erlang 4.7.3. Reference Manual, 1999.

[33] R. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulations for the
Asynchronous π-calculus. In Proc. CONCUR '96, LNCS 1119, Springer
Verlag.

[34] Davide Sangiorgi and David Walker. The π-calculus. A Theory of Mobile
Processes. Cambridge University Press, New York, NY, 2001.

[35] Robin Milner. Communicating and Mobile Systems: the π-calculus.
Cambridge University Press, New York, NY, 1999.

[36] Calculi for Mobile Processes. http://lamp.epfl.ch/mobility/.

[37] Promela. http://www.dai-arc.polito.it/dai arc/manual/tools/jcat/main /node168.html.

[38] M. Pistore. History Dependent Automata. PhD. Thesis TD-5/99, Universit`a
di Pisa, Dipartimento di Informatica, 1999.

[39] U. Montanari and M. Pistore. Checking bisimilarity for .nitary ð-calculus. In
Proc. CONCUR’95, LNCS 962. Springer Verlag, 1995.

[40] JACK: http://matrix.iei.pi.cnr.it/projects/JACK/

[41] R. De Nicola and F. W. Vaandrager. Action versus state based logics for
transition systems. In Proc. Ecole de Printemps on Semantics of Concurrency,
LNCS 469. Springer Verlag, 1990.

