
How Developers Use Exception Handling in Java?

Muhammad

Asaduzzaman

University of Saskatchewan

md.asad@usask.ca

Muhammad

Ahasanuzzaman

University of Dhaka

ahsan.du2010@gmail.com

Chanchal K. Roy

University of Saskatchewan

chanchal.roy@usask.ca

Kevin A. Schneider

University of Saskatchewan

kevin.schneider@usask.ca

ABSTRACT
Exception handling is a technique that addresses exceptional
conditions of applications, allow them to continue the nor-
mal flow of of executions in the event of exceptions or report
such events to developers. Although techniques, features
and bad coding practices of exception handling have been
discussed both in developer communities and in the liter-
ature, there is a marked lack of empirical evidence of how
developers use exception handling in practice. In this paper
we use Boa language and infrastructure to analyze 274k open
source Java projects in GitHub to discover how developers
use exception handling. We not only consider various excep-
tion handling features but also explore bad coding practices
and their relationship to the experience of developers. Our
result gives some interesting insights. For example, we found
that bad exception handling coding practices are common
in source code projects and regardless of the experience all
developers use exception handling coding bad practices.

Keywords
Java; exception; language feature; source code mining

1. INTRODUCTION
An exception is an exceptional event that occurs dur-

ing the execution of a program and can disrupt the nor-
mal flow of executions. To enable programmers to deal
with such exceptional situations, modern programming lan-
guages have built-in support for exception handling. For
example, Java programming language uses several language
constructs (such as try, catch, finally and throw) to sup-
port exception handling. Code that might throw exceptions
need to be enclosed by a try statement that can catch those
exceptions. The try statement needs to be supported by
catch and finally statements that can contain instructions
to specify the actions need to be taken when an exception
occurs. Exception handling o↵ers a number of advantages.
This includes separating error handling code from the main

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

logic, di↵erentiating and grouping di↵erent exceptional sit-
uations and enabling programs to deal with errors.

It is required that developers follow the suggested guide-
line in the Java Language specifications 1 to enjoy the ben-
efits of exception handling. While a number of techniques
have been developed to identify causes of exceptions, sug-
gesting exception handling code or to identify web discus-
sions pertaining exceptions, there is a marked lack of em-
pirical evidence of how developers use exception handling in
practice. In this paper we utilize Boa language and infras-
tructure [1] to answer questions regarding how developers
use exception handling in Java. These questions are selected
to explore bad exception handling coding practices, their re-
lationship to the experience of developers, using exception
chaining, defining custom exception classes and using new
exception handling features.

The remainder of the paper is organized as follows. Sec-
tion II describes the data set used in our study. Section
III describes briefly explain exception handling technique in
Java. Section IV presents our research questions including
results of our empirical study. Section IV summarizes the
related work and Section V concludes the paper.

2. DATA SET
The data set used in this study is the 2015 GitHub data

set from Boa. These include all Java projects on the GitHub
with at least one or more Git repositories. The GitHub data
set represents 274k projects with 22 million revisions con-
tributed by 320k developers. It consists of more than 120
million files and over 20 million of them are unique java
source files. Since we are interested in finding how develop-
ers are handling exceptions in Java without any constraints,
we include small projects as well as the large ones.

3. EXCEPTION HANDLING IN JAVA
This section briefly describes exception handling in Java.

The language supports three di↵erent kinds of exceptions.
These include checked exception, unchecked exception and
error (see Fig. 1). Checked exceptions are those exceptions
that a well written Java application should handle and re-
cover from. Code that anticipates checked exception must
follow the catch or specify requirements in Java. The re-
quirements are as follows. The code should enclosed by a
try statement and must followed by exception handlers. If
an exception occurs in the try block, the exception will be

1https://docs.oracle.com/javase/specs/



Throwable

Exception
(Checked)

Error
Unchecked

RuntimeException
(Unchecked)

Other Checked 
Exceptions

Other Unchecked 
Exceptions

Figure 1: Exception Hierarchy in Java

handled by exception handlers. The try block must be fol-
lowed by either one or more catch blocks, a finally block
or a combination of both to handle exceptions. If a method
throws one or more exceptions it must list those exceptions
using throws clause in its declaration. The second kind of
exception is the error. The causes of these exceptions are ex-
ternal to applications and that applications cannot recover
form these exceptions. These are identified by Error and
its subclasses. The last kind of exceptions are those excep-
tions that are internal to an application and that the ap-
plication cannot recover from it. These exceptions are not
subject to catch or specify requirement. They are indicated
by Runtime exception and its subclasses. Exceptions that
are not indicated by Error, RuntimeException or their
subclasses, are checked exceptions.

4. HOW DEVELOPERS USE EXCEPTION
HANDLING IN JAVA

This section answers our research questions regarding ex-
ception handling in Java. In addition to discussing incorrect
use of exception handling we also investigate their relation-
ships to the experience of developers, using new features,
patterns in exception chaining and also in creating own ex-
ception classes.

4.1 Exception Handling Coding Practices to
Avoid

To identify improper exception handling coding practices
we review Java Language Specifications, previous research
papers [6, 4], software information sites, developer blogs and
books [5]. We identify the following coding patterns that
need to be avoided. While this may not be a complete list,
they do represent the majority of the improper exception
handling coding practices.

• Ignoring exceptions (IE): In this case developers
leave the catch or finally block empty. This defeats the
purpose of exceptions because this prevents programs
to recover from exceptions.

• Catching unchecked exception (CUE): Unchecked
exceptions results of programming errors that can be
fixed by checking proper conditions. Generally unchecked
exceptions should not caught although there are excep-
tions to this idea.

• Not preserving original exception (NPOE): In-
stead of handling exceptions at the lower level, devel-
opers use the throw statement to throw exceptions
to the higher level in response to another exceptions.

Nu
m

be
r o

f e
xa

m
pl

es

0

5

10

15

20

25

30

35

40×105

Improper exception handling practices
IE CUE NPOE UGEH CE

Figure 2: The frequency of di↵erent improper or
bad exception handling coding practices

If they forget to wrap the original exception object
within the new exception object they are throwing the
exception by loosing the original source of the problem.

• Use generic exception handler (UGEH): Instead
of catching specific exceptions developers use a single
catch block to collect all exceptions. As a result it
may be di�cult to determine why the exception was
thrown. consequently the runtime system cannot at-
tempt recovery.

• Catching Error (CE): Applications cannot recover
from errors that are caused by the environment in
which the application is running. All errors in java are
of type java.lang.Error. Thus, developers should not
catch exceptions indicated by Error or its subclasses.

We are interested in finding how frequent the improper ex-
ception handling coding practices are in source code repos-
itories. Figure 2 shows the frequency of those coding prac-
tices in GitHub data set. The figure shows that the data
set contains significant number of all five bad coding prac-
tices. We find that using generic exception handler is the
most frequent one. This is an indication that developers
are very reluctant in using exception handling. Then comes
the ignoring exceptions. Many developers are not aware of
recovering from exceptions and thus leave the catch and fi-
nally blocks empty. This could cause di�culties maintaining
applications as well as leave potential bugs in the code. We
found a very small number of code examples where develop-
ers catch the error, indicates that most developers are aware
of this bad practice.

4.2 How developers use exception chaining
In many applications lower level methods require to prop-

agate information regarding exceptions to the higher level.
This enables applications to notify end users about excep-
tions and users can take appropriate actions at the abstract
level. Exception chaining is the mechanism that allows ap-
plications to propagate exceptions up the call stack and
at the same time preserving important error information.
To use exception chaining application uses throw statement
that throws an exception in response to another exception.
We are interested to investigate the patterns of throwing ex-
ceptions. The data can help other developers to learn var-
ious ways of constructing the throw statements. Table 1



Table 1: Patterns of expressions used for exception chaining
Expression Type Percent Example
Cast 1.0215 catch(CustomException ex){ throw (UnsupportredEncodingException) ex;}

Conditional 0.0535
catch(Exception ex){ error code==0?
throw new RuntimeException(”Error message”,ex):
throw new Exception(”Another message”,ex); }

Method Call 5.8479 catch(Expression ex){ throw InvocationTargetException.getCause();}
New 76.1696 catch(Expression ex){ throw new Exception(”Additional error message”,ex) }
Variable Access 16.8920 catch(Expression ex){ throw ex; }
Assignment 0.0147 catch(Expression ex) { throw lastException = new KeyStrokeException(ex); }
Null 0.0008 catch(Expression ex) { return null ; }

Fi
le

s

0

2000

4000

6000

First Uses, by File

2006 2008 2010 2012 2014 2016

Fi
le

s

0

50

100

First Uses, by File

2009 2010 2011 2012

AutoCloseable

Fi
le

s
0

1

2×105

First Uses, by File

2004 2006 2008 2010 2012 2014 2016

Try-With-Resources

Multi-Catch

Fi
le

s

0

1

2×105

First Uses, by File

2009 2010 2011 2012 2013 2014 2015

Suppressed Warning

Figure 3: The number of files use new features for the first time over a period of time

shows di↵erent expression types developers used to throw
exception in response to another exception. We see that the
largest number of throw statements in exception chaining
uses new expression type where they throw a new exception
object that incorporates additional error message and may
also contain reference to the lower level exceptions. Condi-
tional expressions can be used to throw di↵erent expression
objects with di↵erent error message information depending
on some conditions. The assignment and null expressions
are very infrequent. Expressions of variable access category
become the second and the method call become the third
most popular expression type used in exception chaining.

4.3 How developers define their own excep-
tions?

Developers can define their own exceptions by extending
any subclasses of Throwable. Since unchecked exceptions
(RuntimeException, Error and their subclasses) do not
require to fulfil catch or specify requirement it may be the
case that developers tempted to create all exceptions by ex-
tending RuntimeException. The o�cial documentation of

Java suggests that if a client can expect to recover from an
exception, make it a checked exception; otherwise make it an
unchecked exception. We are interested to find how devel-
opers create their own exceptions. The data can indicate us
which options developers prefer to use in practice. Interest-
ingly when we investigate this in GitHub data set we found
that in majority of the cases developers define their own ex-
ception classes by extending Exception. This indicates that
when developers create their own exceptions, they are con-
cerned about error recovery. We also observe evidence where
developers create exception classes by extending Runtime,
Throwable or Error, but those cases are very few in num-
bers.

4.4 When do developers use new exception han-
dling features?

Java SE 7 comes with a number of changes in exception
handling mechanism. These include catching multiple ex-
ceptions by using a single catch statement (also knows as
multi-catch), try-with-resources declaration that frees devel-
opers to explicitly close resources, AutoCloseable interface



Novice
Beginner
Competent
Proficient
Expert

Fr
eq

ue
nc

y

0

10

20

30

40

50

60

70

Improper Exception Handling Categories
IE CUE NPOE UGEH CE

Figure 4: The frequency of di↵erent improper ex-
ception handling coding practices for various devel-
oper experience category

(classes that want to take advantage of try-with-resources
need to implement the close method of the AutoCloseable
interface) and suppressed warning. We are interested to find
whether developers use these new features in their code.
Fig 3 shows how many files incorporate a new features in
each month. From the figure we can see that not only devel-
opers use the new features, but also developers start using
these features long before their release (these features are
o�cially released in 2011, July).

4.5 Do developers’ experience affect exception
handling coding practice

We are interested in finding how developers’ experience
a↵ect bad exception handling coding practices. To calculate
experience of developers, we use the total number of revi-
sions committed to the source code by a developer up to a
particular point of time. Here, in our analysis, we consider
september 2015 as the particular point of time. We calcu-
late the experience using the weighted mean of the number
of commited revisions of all contributing developers as of
Mockus and Weiss[7]. The weight is the proportion of the
commit of a particular project and experience is her general
experience at that particular time. Here, we categorize de-
velopers in five categories using their experience calculated
by the above process and they are : 1. Novice 2. Beginner
3. Competent 4. Proficient 5. Expert. Then, we investigate
the improper coding practices among the above five expe-
rience categories. Result from our study (see Fig. 4) shows
that expert developers are not concerned using the excep-
tion handling mechanism and they do not try to avoid the
improper coding practices. We find out that, in most of the
improper exception handling practices, they are the highest
in using those patterns. This is an indication that they do
not try to avoid those coding practices which could be prob-
lematic. Developers from other experience categories also
use improper coding practices.

5. RELATED WORK
A number of studies have peen performed on exception

handling. For example, Weimer and Necula [6] performed
data flow analysis to find exception handling mistakes in
resource management and characterize them. Cabral and

Marques [8] analyzed 32 Java and .NET applications and
found that exception handling are not used as an error han-
dling tool. When exceptions occur applications take di↵er-
ent recovery actions. Thummalapenta and Tie [3] devel-
oped a technique that mines exception handling rules as a
sequence of association rules. In another study [4] they re-
ported that exception handling actions can be conditional
and may need to accommodate exceptional cases. However,
none of these studies explore improper exception handling
coding practices or how new exception handling features are
introduced in the code. The most relevant study to ours is
the work of Dyer et al. [2] that used Boa infrastructure to
analyze the use of Java language features over time. While
their work is to determine how new features are adopted
once released in Java, we focus our attention to how devel-
opers use exception handling in Java.

6. CONCLUSION
In this paper we investigate exception handling in Java

using the ultra large scale data set (274k Java projects)
provided by Boa infrastructure. We use Boa language for
both creating queries and collecting answers to our research
questions. Our study reveals that improper exception han-
dling coding practice is not uncommon in Java applications.
Through our investigation on how developers use exception
chaining and define their own exceptions, we find that when
developers use them they typically follow the o�cial Java
language guidelines. We also investigate new exception han-
dling features of Java. Our study also reveals that improper
exception handling coding practices are not a↵ected by the
experience of developers and developers frequently use new
features ahead of time. The programs and additional study
results can be found online2.

7. REFERENCES
[1] R. Dyer , H. A. Nguyen , H. Rajan , T. N. Nguyen,

“Boa: a language and infrastructure for analyzing
ultra-large-scale software repositories”, in Proc. of
ICSE, 2013, pp. 422-431.

[2] R. Dyer ,H. Rajan ,H. A. Nguyen, T. N. Nguyen,
“Mining billions of AST nodes to study actual and
potential usage of Java language features”, in Proc. of
ICSE, 2013, pp. 779-790.

[3] S. Thummalapenta, T. Xie, “Mining exception
handling rules as sequence association rules”, in Proc.
of ICSE, 2013, pp. 496-506.

[4] T. Xie, S. Thummalapenta, “Making exceptions on
exception handling”, in Proc. of WEH, 2013, pp. 1-3.

[5] J. Bloch, “E↵ective Java”, 2nd Edition (The Java
Series), Addison-Wesley, 2008.

[6] W. Weimer and G. C. Necula, “Finding and
preventing run-time error handling mistakes”, In Proc.
OOPSLA, 2004, pp. 419-431, 2004.

[7] A. Mockus and D. M. Weiss. Predicting risk of
software changes. Bell Labs Technical Journal, 5(2),
2000, pp. 169-180.

[8] Bruno Cabral, Paulo Marques, “Exception handling: a
field study in Java and .NET”, in Proc. ECOOP, 2007,
pp. 151-175.

2https://asaduzzamanparvez.wordpress.com/researchall/


