
A Simple, Efficient, Context-sensitive Approach for Code
Completion

Muhammad Asaduzzaman1,*,†, Chanchal K. Roy1, Kevin A. Schneider1 and Daqing Hou2

1Department of Computer Science, University of Saskatchewan, Canada
2Electrical and Computer Engineering Department, Clarkson University, USA

ABSTRACT

Code completion helps developers use application programming interfaces (APIs) and frees them from re-
membering every detail. In this paper, we first describe a novel technique called Context-sensitive Code
Completion (CSCC) for improving the performance of API method call completion. CSCC is context sen-
sitive in that it uses new sources of information as the context of a target method call. CSCC indexes method
calls in code examples by their context. To recommend completion proposals, CSCC ranks candidate
methods by the similarities between their contexts and the context of the target call. Evaluation using a
set of subject systems and five popular state-of-the-art techniques suggests that CSCC performs better than
existing type or example-based code completion systems. We conduct experiments to find how different
contextual elements of the target call benefit CSCC. Next, we investigate the adaptability of the technique
to support another form of code completion, i.e., field completion. Evaluation with eight different subject
systems suggests that CSCC can easily support field completion with high accuracy. Finally, we compare
CSCC with four popular statistical language models that support code completion. Results of statistical
tests from our study suggest that CSCC not only outperforms those techniques that are based on token level
language models, but also in most cases performs better or equally well with GraLan, the state-of-the-art
graph-based language model. Copyright © 2016 John Wiley & Sons, Ltd.

Received 20 February 2015; Revised 2 April 2016; Accepted 9 April 2016

KEY WORDS: API methods; code completion; field completion; context sensitive; simhash; language
model

1. INTRODUCTION

Developers rely on frameworks and libraries of APIs to ease application development. While
application programming interfaces (APIs) provide ready-made solutions to complex problems,
developers need to learn to use them effectively. The problem is that because of the large number of
APIs, it is practically impossible to learn and remember them completely. To avoid developers
having to remember every detail, modern integrated development environments provide a feature
called Code Completion, which displays a sorted list of completion proposals in a popup menu for a
developer to navigate and select. In a study on the Eclipse IDE, Murphy et al. [1] found that code
completion is one of the top ten commands used by developers, indicating that the feature is crucial
for today’s development. In this paper, we focus our attention on method and field completion
because these are the most frequently used forms of code completion [2] (other forms of code

*Correspondence to: Muhammad Asaduzzaman, Department of Computer Science, University of Saskatchewan, Canada.
†E-mail: parvez.usask@gmail.com

Copyright © 2016 John Wiley & Sons, Ltd.

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2016
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1791



completion include word completion, method parameter completion, and statement completion). In the
remainder of the paper, we use the term Code Completion to refer to method and field completion unless
otherwise stated.

Existing code completion techniques can be divided into two broad categories. The first category uses
mainly static type information, combined with various heuristics, to determine the target method call,
but does not consider previous code examples or the context of a method call. A popular example is
the default code completion system available in Eclipse, which utilizes a static type system to
recommend method calls. It sorts the completion proposals either alphabetically or by relevance
before displaying them to users in a popup menu. Hou and Pletcher [3] developed another technique,
called Better Code Completion (BCC), that uses a combination of sorting, filtering and grouping of
APIs to improve the performance of the default type-based code completion system of Eclipse.

The second category of techniques takes into account previous code examples and usage context
matching to recommend target method calls [4–6]. For example, to make recommendations, the Best
Matching Neighbor (BMN) [4] code completion system matches the current code completion
context to previous code examples using the k-Nearest Neighbor (kNN) algorithm.

BMN has successfully demonstrated that the performance of method call completion can be
improved by utilizing the context of a target API method call. BMN focuses on using a special kind
of context for a given call site, i.e., the list of methods that have been invoked on the same receiver
variable plus the enclosing method of the call site. But there are many other possible forms of
context to be considered. As an example of other forms of context, consider the code shown in
Figure 1, where a file is read via the BufferedReader object br in a while loop. In fact, the
readLine method is commonly called as part of a while loop’s condition located inside a try-
catch block. Within a few lines of distance of the readLine method, developers usually create
various objects related with that method call. For example, developers typically create a
BufferedReader object from an instance of FileReader and later use that object to call the
readLine method. Therefore, in addition to the methods that were previously called on the
receiver object br, keywords (such as while, try, new), other methods (such as FileReader,
BufferedReader constructor name) can be considered as part of the context of readLine as
well. Adding these extra pieces of information can enrich the context of the targeted call to help
recommend methods that are more relevant (readLine, in this case).

In this paper, we further explore the performance implications of these additional forms of context for
code completion. To this end, we first propose a context-sensitive code completion technique, called
Context-sensitive Code Completion (CSCC), that leverages code examples collected from
repositories to extract method contexts to support code completion. Given a method call, we capture
as its context any method names, Java keywords, class or interface names that appear within four
lines of code. In this way, we build a database of context-method pairs as potential matching
candidates. We use tokenization rather than parsing and advanced analysis to collect the context data,
so our technique is simple.

When completing code, given the receiver object, we use its type name and context to search for method
calls whose contexts match with that of the receiver object. To scale up the search, we use simhash
technique [7] to quickly eliminate the majority of non-matching candidates. This allows us to further

Figure 1. An example of reading a file where readLine is the target of code completion.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



refine the remaining much smaller set of matching candidates using more computationally expensive
textual distance measures. This also makes our technique efficient and scalable. We sort the matching
candidates using similarity scores, and recommend the top candidates to complete the method call.

We compare our context-sensitive code completion technique with five other state-of-the-art
techniques [4, 8] using eight open source software systems. Results from the evaluation suggest that
our proposed technique outperforms all five state-of-the-art type or example-based systems that we
have compared. Moreover, to understand how exactly the context of a method call affects code
completion, we propose a taxonomy for the contextual elements of a method call and compare how
different techniques perform for each category of contextual elements (see Section 6). This experiment
helps us clearly understand the strengths and limitations of CSCC and other existing techniques. We
also conduct a set of experiments on CSCC to uncover the effect of context length, impact of different
context information, effectiveness in cross-project prediction, performance for different frameworks or
libraries, and evaluate building context using the four lines following a method call.

After releasing CSCC as an Eclipse plugin we received a number of requests to extend support for
fields. During our investigation we found that the context CSCC uses for method call completion can
easily capture the context of field access too. Evaluation on field completions using eight different
subject systems and with four state-of-the-art code completion techniques reveals that CSCC is able
to outperform all four techniques by a substantial margin.

Recently, a number of techniques have been developed that uses statistical language models for
predicting the next token or completing API elements [5, 6, 9, 10]. They use different information
sources to capture the context. These include token sequences, caching, API usage graphs or a
combination of them. We are interested on how well CSCC performs compared to those techniques.
Toward this goal, we compare CSCC with four other statistical language model techniques and
present the study results in this paper.

This paper makes the following contributions, where (1), (2) and (3) are from the original ICSME
2014 paper [11], and the rest are new in this paper:

1. A technique called CSCC to support code completion using a new kind of context and previous
code examples as a knowledge-base.

2. A quantitative comparison of the proposed technique CSCC with five existing state-of-the-art
tools that shows the effectiveness of our proposed technique.

3. A taxonomy of method call context elements and an experiment that helps to identify strengths
and limitations of CSCC and other existing techniques (see Section 6 for details of the taxonomy).

4. A set of studies that helps to understand different aspects of the technique (see Section 5).
5. Extending CSCC for field completion and a quantitative comparison with four other state-of-the-art

tools.
6. A comparison of CSCC with four state-of-the-art statistical language model code completion

techniques.

The remainder of the paper is organized as follows. Section 2 briefly describes related work. Section 3
describes our proposed technique CSCC. Section 4 compares CSCC with various code completion
techniques using eight open source software systems for completing API method calls. We conduct a set
of studies to uncover different aspects of the technique and present the results in Section 5. Section 6
describes the extension of the technique to support field completion including evaluation with four other
state-of-the-art tools. We compare CSCC with statistical language model based code completion
techniques in Section 7. Section 8 summarizes the threats to validity. Finally, Section 9 concludes the paper.

2. RELATED WORK

An important work related to our study is that of Bruch et al. [4]. They propose the BMN completion
system that uses the kNN algorithm to recommend method calls for a particular receiver object. The
most fundamental difference between BMN and CSCC lies in their definition of context. Our
definition of a method call context includes any method names, keywords, class or interface names
within the four lines prior to a method call, whereas BMN’s context is made of the set of methods

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



that have been called on the receiver variable plus the enclosing method. Because of this difference,
BMN and CSCC use different techniques to calculate similarities and distances. Last, BMN uses
frequency of method calls to rank completion proposals, whereas CSCC ranks them based on
distance measures.

Hou and Pletcher [3, 8, 12] propose a code completion technique that uses a combination of sorting,
filtering and grouping of APIs. They implement the technique in a research prototype called BCC.
BCC can sort completion proposals based on the type-hierarchy or frequency count of method calls. It
can filter non-API public methods. BCC also allows developers to manually specify a set of methods
that are logically related, and thus belong to the same group and appear together while displaying
completion proposals in a popup menu. However, BCC does not leverage previous code examples.
Moreover, BCC requires the filters to be manually specified which can only be performed by expert
users of code libraries and frameworks. However, because CSCC considers the usage context of
method calls to recommend completion proposals, methods that are not appropriate to call in a
particular context would be automatically filtered out. So CSCCwould require less effort to use than BCC.

Another important work related to our study is the GraLan, a graph-based statistical language model
that targets completing API elements [6]. The term API element refer to method call, field accesses and
control units (such as for, while, if etc.) used in the API usage examples. The technique mines the
source code to generate API usage graphs, called Groums. Given an editing location, the technique
determines the API usage subgraphs surrounding the current location and use them as context.
GraLan then computes the probability of extending each context graph with an additional node.
These additional nodes are collected, ranked and recommended for code completion. CSCC differs
from GraLan in terms of context definition, recommendation formulation and ranking strategy. For
example, GraLan rank completion proposals based on their probability distributions, but CSCC uses
textual distance measures.

Besides GraLan, a number of code completion systems have been proposed that uses statistical
language models. Hindle et al. develop a code suggestion engine that uses the widely adopted
N-gram model to recommend the next token [5]. Tu et al. develop a language model (known as
Cache LM) that uses a cache component to capture the localness of software [10]. Christine et al.
develop an Eclipse plugin, called CACHECA, that combines the native suggestions made by the
Eclipse IDE with that of the cache language model [13]. Nguyen et al. propose a statistical semantic
language model for source code, called SLAMC [9]. The model incorporates the semantic
information of code tokens. It also captures global concerns using a topic model and pairwise
association of language elements. The model has been used to develop a code suggestion engine to
predict the next token. Raychev et al. [14] propose a code completion technique, SLANG, that
collects sequence of method calls to create a statistical language model. When a developer requests
for a code completion, the tool completes the editing location using the highest ranked sequence of
method calls computed by the language model. While all these techniques except SLANG work at
the lexical level, CSCC works at the API level. CSCC differs from SLANG in context formulation.
The technique not only collects method calls, but also collects keywords and type names.

Nguyen et al. [15, 16] use a graph-based algorithm to develop a context-sensitive code completion
technique, called GraPacc. The technique mines API usage graphs or Groums to capture API usage
patterns in open source code bases. This creates an API usage database. During the development
phase, the technique extracts context-sensitive features and matches them with usage patterns in the
database. It then recommends a list of matched patterns to complete the remaining code.

Although both GraPacc and CSCC utilize code context to make recommendations, the goals and
approaches are different. GraPacc recommends multiple statements at a time, but CSCC completes a
single method call. Similar to GraLan, GraPacc also leverages Groums for identifying code context.
Because the objective of CSCC is similar to GraLan and we already include that in our study, we
did not compare with GraPacc.

Robbes and Lanza [2] propose a set of approaches to support code completion that use program
history to recommend completion proposals. They define a benchmark to measure the usefulness of
a code completion system and evaluate eight different code completion algorithms. They found that
the typed optimist completion technique provides better results than any other techniques because it
merges the benefits of two different techniques.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



The program change history can be considered the temporal context for a method call, whereas ours
is the spatial context. While their technique requires a change-based software repository to collect
program history, our technique can work with any repository.

Research related with recommending source code examples is also related to our study because of
their use of context. Among various work on code examples recommendation, the most relevant
work to ours is that of Holmes and Murphy [17].They use the notion of structural context to
recommend source code examples. The context in their case contains information about inheritance,
method calls and types declared or used in a method. Although our method call usage context share
some similarity with theirs, the objectives are completely different.

There are also a number of other techniques or tools that make use of previous code examples, but their
goals are different than ours. For example, Mooty et al. [18] develop an Eclipse plugin, called Calcite, that
helps developers to correctly instantiate a class or interface using existing code examples. While Calcite
helps instantiate a class, we help developers complete method calls. Zhang et al. [19] develop a tool,
called Precise, that mines existing code bases to recommend appropriate parameters for method calls.
Hill and Rideout [20] focus on automatic completion of a method body by searching similar code
fragments or code clones in a code-base. Lee et al. [21] introduce a technique that identify changes of
program entities (such as method names) during the evolution of a software system. When a developer
requests for a completion, the technique presents the program entities along with their changes through
code completion. It also helps developers to navigate to the past code examples to see the changes.
Jacobellis et al. [22] leverage code completion to automate the edit operations of source code from user
specified custom, reusable template of code changes.

Keyword programming [23] is also related to our study, but it defines a completely different way of user
interaction for code completion. Instead of typing amethod name, users type some keywords that give hints
about the method the user is trying to call. The algorithm then automatically completes the method call or
makes appropriate suggestions to complete the remaining part. Han and Miller [24] later introduce
abbreviation completion that uses a non-predefined set of inputs to complete the target method call.

Previously discussed techniques make use of floating menus to present completion proposals and
none focuses on the improvement of the user interface. Omar et al. [25] present an approach that
allows library developers to integrate specialized interfaces, called palettes, directly into the editor.
The benefit of the approach is that developers do not need to write the code explicitly, rather the
specialized interface allows users to provide required input and generate the appropriate code. They
developed a tool, named Graphite, that allows Java developers to write a regular expression in a
palette and found that the addition of such a specialized interface is helpful to the professional
developers. Instead of focusing on a specialized interface for code completion, we focus on
predicting target method calls as a basis for suggesting completion proposals. However, palettes can
complement our technique to complete method parameters, which remains as a future work.

3. PROPOSED ALGORITHM

In this section, we describe our algorithm for finding method calls to recommend for a target object.
Figure 2 presents an overview of the process. Our example-based, context-sensitive code completion
system works in three steps:

• Collect the usage context of API method calls from code examples and index them by their
contexts to support quick access. We model the context of an API method call by method calls,
Java keywords and type names that appear within the four lines prior to the receiver object that
called the method. We hypothesize that these elements around the target method call can provide
a better, fuller context than other approaches [4, 8].

• Search for method calls whose context matches with that of the target object. One approach would
be to directly measure the similarity between the context of the target object and that of each
method call in the example code base using string edit-distances. However, string edit-distance
operations are computationally expensive. To speed up the search, we instead use the Hamming
distance over the simhash values as similarity measures. We determine a smaller list of method

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



names that are the more likely candidates for code completion, which we refer to as the candidate
list.

• The final step synthesizes the method calls from the candidate list. For each method name in the
candidate list, we use a combination of token-based Longest Common Subsequence (LCS) and
Levenshtein distance to determine a similarity value of its context with that of the receiver object.
We then sort the method names in descending order of similarity value and recommend the top
three names to complete the method call.

We describe the three steps in detail as follows.

3.1. Collect usage context of method calls

In this step, CSCC mines code examples to find the usage context of API method calls. To capture
a method call context, we consider the content of the n lines prior to it, including the line where
the target method call appears. In this study, we use n=4 and we validate this decision in
Section 5.

We collect the following three kinds of information from the four lines of context, which we refer to
as the overall context of the method call:

1. Any method names.
2. Any Java keywords except access specifiers.
3. Any class or interface names.

When extracting the overall context, we ignore blank lines, comment lines or lines containing only
curly braces. We also remove any duplicate tokens from the overall context.

In addition, we separately collect a line context for the target method, which includes any method
names, keywords (except access specifiers), class or interface names and assignment operators that
appear on the same line but before the target method call. When the overall contexts are completely
different and fail to match, line contexts act as a secondary criterion for matching.

To further explain the construction of both overall and line context, consider the method call at line
number 13 as shown in Figure 3. The contents of both contexts include tokens and their locations. Note
that although line number 10 is within four lines of our target method call getDisplay, it is not
considered part of the context as it is located outside of the createContents method containing the
target call getDisplay.

We use a two-level indexing scheme to organize the collected usage contexts of method calls (see
Figure 4 for an example of it). We use the type name of a receiver object to group all method calls
that have been invoked on the type. We use an inverted index structure [26] to organize such a
group of method calls. More specifically, an inverted index is a data structure that maps each term
to its location in a document. We represent each overall context of a method call as a document, and
use tokens from the context to index the set of documents where they appear.

Figure 2. An overview of CSCC’s recommendation process starting from a code completion request.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



3.2. Determine candidates for code completion

When a user requests a method call completion (for example, in Eclipse typing a dot (.) after an object
name initiates such a request), our algorithm first extracts both overall and line contexts for the receiver
object. To find candidate methods for code completion, we match the current context to those extracted
from the example code base. Specifically, we use the type name of the receiver object as an index to
determine the related inverted index structure, which contains all method calls made on the receiver
type (Figure 4). We then use tokens from the overall context as keys to the inverted index structure
to collect all those method calls in the code examples that have the same type as the receiver object.
We refer to these matching method calls as the base candidate list.

The base candidate list often contains thousands of method calls, so we need to reduce them to a
small number of most likely candidates in order to recommend. We follow a two-step process to
search for the most likely candidates. We first use the simhash technique to determine a short list of
method names (currently the top 200 that are deemed most similar to the target context) that are
more likely to complete the current method call and quickly eliminate the majority of others. To
calculate string similarity metrics, we concatenate all the tokens of each context and generate a
simhash value for the concatenated string (see Figure 5 for an example). We use the simhash

Figure 3. Overall context and line context for getDisplay.

Figure 4. Database of method call contexts are grouped by receiver types using inverted index structure. The
figure on the left side shows the collected context information for an API method call. The figure on the right

side shows how we use the information to build an inverted index structure.

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



technique to eliminate most of the irrelevant matching candidates because it is both fast and scalable.
Second, we use the normalized LCS and Levenshtein distances to measure the fine-grained similarity
between the target context and the context of each likely matching candidate to obtain a refined
candidate list. Calculating LCS and Levenshtein distances are both time consuming operations.
Although they provide fine-grained similarity measures, because of the near real-time constraint on
code completion, we cannot apply them directly on the base candidate list.

We use the simhash technique [7] to identify the most likely method call candidates. Simhash uses a
cryptographic hash function to generate binary hash keys, also known as simhash values. An important
property of simhash is that strings that are similar to each other have either identical or very similar
simhash values. Therefore, we determine the similarity between each pair of contexts using the
Hamming distance of their corresponding simhash values. We use the Hamming distance of the
overall context to sort the matching candidates unless the Hamming distance of the line context
exceeds a predefined threshold value, in which case we use the Hamming distance of the line
context as the distance measure. After sorting by similarity, we take the top k method contexts as
the likely matching candidates of the target context. After experimentation with different values of k,
we found that k=200 is a good choice to work with and we use that value in our study. We refer to
this list as the refined candidate list.

To recommend method calls, we further sort the method names in the refined candidate list by
combining both overall and line context similarities as follows. We use the normalized LCS distance
to measure the similarity of the token sequences from the overall context. We use Levenshtein
distance to measure the similarity of the token sequences from the line context. We sort matching
candidates in descending order of their overall context similarity. However, in case of a tie for the
overall context similarity, we use the line context similarity. We ignore all matching candidates
whose similarity value drop to a certain threshold. We empirically found that 0.30 is a good choice
to work with.

The simhash technique has been found effective for detecting similar pages in a large collection of
web documents [27] and also has been used successfully in detecting similar code fragments in code
clone detection [28]. Although various hash functions are available, we use the Jenkin hash function

Figure 5. Context similarities are measured using the Hamming distance between simhash values.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



because it has been found effective in a previous study [28]. We generate a 64 bit simhash value for
both overall and line contexts of the target object. To save computation time, we precompute the
simhash values. We determine the similarity between each pair of contexts using the Hamming
distance of the corresponding simhash values.

3.3. Recommend top-3 method calls

The objective of this step is to recommend a list of completion proposals (i.e., method names). Because
there are many code examples associated with the same method call, the sorted list of method names
obtained from the previous step may contain many duplicates. After eliminating duplicates, we
present the top three method names to the users.

4. EVALUATION

We evaluate our technique and compare CSCC with five state-of-the-art code completion systems
using eight open-source systems (Table I). For a given subject system, we determine all locations
where methods from a target API have been called. This set of method calls constitutes our data set.
We then apply the ten-fold cross validation technique [4] to measure the performance of each
algorithm. This is a popular way of measuring performance of information retrieval systems [29]
and has been used previously in many research projects. First, for each system we divide the data
set into ten different folds, each containing an equal number of method calls. Next, for each fold, we
use code examples from the nine other folds to train the technique for method call completion. The
remaining fold is used to test the performance of the technique.

We use recall to measure how many cases a technique produces relevant (correct) recommendations
out of the total test cases. Clearly a technique that recommends all possible methods would always
achieve a great recall of 1. That is why we consider the precision measure. It is defined as the ratio
between the number of times a technique produces relevant recommendations and the number of
times that technique produces any recommendations. The higher a relevant recommendation is in the
list of recommendations, the better. That is why we collect precision measure at top-1, top-3 and
top-10 recommendations. Finally, we use the F-Measure, a widely accepted measure, to correlate
precision and recall by computing their harmonic means.

Recall ¼ recommendations made ∩ relevant

recommendations requested
(1)

Precision ¼ recommendations made ∩ relevant

recommendations made
(2)

F � measure ¼ 2 �Precision �Recall
Precisionþ Recall

(3)

where recommendations requested is the number of method calls in our test data for which we will
make a code completion request. Recommendations made is the number of times where a code
completion system makes a recommendation.

4.1. Test systems

We chose to focus on two API’s, SWT and Swing/AWT, as the target for our evaluation. These are
popular libraries extensively used for developing GUI applications.

We selected four systems that used SWT. The largest one is Eclipse 3.5.2 [30], a popular open
source IDE. Vuze [31] is a P2P file sharing client using the bittorrent protocol. Subversive [32]
provides support to work with Subversion directly from Eclipse. RSSOwl [33] is an RSS newsreader.

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



T
ab
le

I.
E
va
lu
at
io
n
re
su
lts

of
co
de

co
m
pl
et
io
n
sy
st
em

s.
D
el
ta

sh
ow

s
th
e
im

pr
ov
em

en
t
of

C
S
C
C
ov
er

B
M
N
.

S
ub
je
ct

sy
st
em

s

P
re
ci
si
on

R
ec
al
l

F
-m

ea
su
re

E
C
C
A
lp
ha

E
C
C
R
el

B
C
C

F
C
C

B
M
N

C
S
C
C

D
el
ta

(%
)

E
C
C
A
lp
ha

E
C
C
R
el

B
C
C

F
C
C

B
M
N

C
S
C
C

D
el
ta

(%
)

E
C
C
A
lp
ha

E
C
C
R
el

B
C
C

F
C
C

B
M
N

C
S
C
C

D
el
ta

(%
)

E
cl
ip
se

T
op
-1

0.
00
6

0.
01

0.
24

0.
31

0.
36

0.
60

24
1

1
1

1
0.
77

0.
99

22
0.
00
8

0.
02
0

0.
39

0.
47

0.
49

0.
75

26
T
op
-3

0.
05
2

0.
20

0.
52

0.
49

0.
63

0.
80

17
1

1
1

1
0.
77

0.
99

22
0.
10

0.
34

0.
68

0.
66

0.
69

0.
88

19
T
op
-1
0

0.
14

0.
34

0.
80

0.
73

0.
69

0.
90

21
1

1
1

1
0.
77

0.
99

22
0.
25

0.
51

0.
89

0.
84

0.
73

0.
94

21
V
uz
e

T
op
-1

0.
00
5

0.
10

0.
23

0.
33

0.
35

0.
56

21
1

1
1

1
0.
76

0.
98

22
0.
00
9

0.
18

0.
37

0.
50

0.
48

0.
71

23
T
op
-3

0.
03

0.
16

0.
49

0.
49

0.
59

0.
73

14
1

1
1

1
0.
76

0.
98

22
0.
06

0.
28

0.
66

0.
66

0.
66

0.
84

18
T
op
-1
0

0.
20

0.
36

0.
94

0.
71

0.
61

0.
83

22
1

1
1

1
0.
76

0.
98

22
0.
33

0.
53

0.
97

0.
83

0.
68

0.
90

22
S
ub
ve
rs
iv
e
T
op
-1

0.
01

0.
03

0.
30

0.
36

0.
58

0.
68

10
1

1
1

1
0.
38

0.
97

60
0.
02

0.
05
8

0.
46

0.
53

0.
46

0.
80

34
T
op
-3

0.
02

0.
07

0.
63

0.
62

0.
77

0.
86

9
1

1
1

1
0.
38

0.
97

60
0.
04

0.
13

0.
77

0.
77

0.
51

0.
91

40
T
op
-1
0

0.
07

0.
20

0.
96

0.
88

0.
79

0.
91

12
1

1
1

1
0.
38

0.
97

60
0.
13

0.
34

0.
98

0.
94

0.
51

0.
94

43
R
so
w
l

T
op
-1

0.
01

0.
07
8

0.
25

0.
32

0.
48

0.
65

17
1

1
1

1
0.
72

0.
98

26
0.
20

0.
14

0.
40

0.
48

0.
58

0.
78

20
T
op
-3

0.
02
4

0.
16

0.
58

0.
51

0.
74

0.
84

10
1

1
1

1
0.
72

0.
98

26
0.
04
6

0.
28

0.
73

0.
68

0.
73

0.
90

17
T
op
-1
0

0.
07
7

0.
29

0.
85

0.
74

0.
80

0.
90

10
1

1
1

1
0.
72

0.
98

26
0.
14

0.
45

0.
92

0.
85

0.
76

0.
94

18
N
et
B
ea
ns

T
op
-1

0.
12

0.
13

0.
34

0.
29

0.
43

0.
66

23
1

1
1

1
0.
67

0.
98

31
0.
21

0.
23

0.
51

0.
45

0.
52

0.
79

27
T
op
-3

0.
18

0.
25

0.
62

0.
53

0.
67

0.
86

19
1

1
1

1
0.
67

0.
98

31
0.
31

0.
40

0.
77

0.
69

0.
67

0.
92

25
T
op
-1
0

0.
36

0.
48

0.
86

0.
73

0.
70

0.
92

22
1

1
1

1
0.
67

0.
98

31
0.
70

0.
65

0.
92

0.
84

0.
68

0.
95

27
JE
di
t

T
op
-1

0.
00
9

0.
12

0.
41

0.
35

0.
52

0.
62

10
1

1
1

0.
98

0.
70

0.
94

24
0.
02

0.
21

0.
58

0.
52

0.
60

0.
75

15
T
op
-3

0.
14

0.
29

0.
62

0.
53

0.
74

0.
79

5
1

1
1

0.
98

0.
70

0.
94

24
0.
25

0.
45

0.
77

0.
69

0.
72

0.
86

14
T
op
-1
0

0.
32

0.
49

0.
83

0.
74

0.
79

0.
85

6
1

1
1

0.
98

0.
70

0.
94

24
0.
48

0.
66

0.
91

0.
84

0.
74

0.
89

15
A
rg
oU

M
L

T
op
-1

0.
03

0.
13

0.
40

0.
32

0.
46

0.
58

12
1

1
1

0.
99

0.
68

0.
95

27
0.
05
8

0.
23

0.
57

0.
48

0.
55

0.
72

17
T
op
-3

0.
12

0.
27

0.
65

0.
53

0.
68

0.
74

6
1

1
1

0.
99

0.
68

0.
95

27
0.
21

0.
43

0.
79

0.
69

0.
68

0.
83

15
T
op
-1
0

0.
27

0.
47

0.
83

0.
78

0.
74

0.
81

7
1

1
1

0.
99

0.
68

0.
95

27
0.
43

0.
64

0.
91

0.
87

0.
71

0.
87

16
JF
re
eC

ha
rt

T
op
-1

0.
02

0.
08

0.
35

0.
32

0.
42

0.
63

21
1

1
1

1
0.
75

0.
98

23
0.
04
0

0.
15

0.
52

0.
48

0.
54

0.
77

23
T
op
-3

0.
05

0.
19

0.
52

0.
63

0.
76

0.
85

9
1

1
1

1
0.
75

0.
98

23
0.
10

0.
32

0.
68

0.
77

0.
75

0.
91

16
T
op
-1
0

0.
27

0.
58

0.
63

0.
92

0.
84

0.
94

10
1

1
1

1
0.
75

0.
98

23
0.
43

0.
73

0.
77

0.
96

0.
79

0.
96

17

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



We also chose four open source software systems for AWT/Swing. NetBeans 7.3.1 [34], the largest,
is an IDE; jEdit [35] is a text editor; ArgoUML [36] is a UML modeling tool and JFreeChart [37] is a
Java charting library.

4.2. Evaluation results

In this section, we discuss the results of evaluating and comparing CSCC with five other code
completion systems (ECCAlpha, ECCRelevance, Frequency-based Code Completion (FCC), BCC
and BMN) using the eight test systems. We have introduced BCC and BMN earlier. ECCAlpha and
ECCRelevance are two default Eclipse code completion systems that leverage the static type system.
ECCAlpha sorts the completion proposals in alphabetical order, and ECCRelevance uses a positive
integer value, called relevance, to sort them. The value is calculated based on the expected type of
the expression as well as the types in the code context (such as return types, cast types, variable
types etc.). The Frequency-based code completion system (FCC) considers the frequency of method
calls in a model to make recommendations. The more frequent a method occurs, the higher its
position is in the completion proposals.

Table I shows the precision, recall and F-measure values for the six code completion systems. The
top four rows are results collected for SWT, and the bottom four rows for AWT/Swing. Overall, CSCC
achieves higher precision and recall values than any of the other techniques for both single and top
three completion proposals.

For the top three proposals, it has precision of 73–86% and recall of 97–99%. The recalls for
ECCAlpha, ECCRelevance and BCC are all one. But both ECCAlpha and ECCRelevance
performed poorly, and BCC outperformed both of them.

Except in a few cases, BCC also outperforms FCC. Furthermore, the performance of FCC is not
great, while its recall is close to 100%, its precision is only 49–62% for the top three proposals.
Interestingly, BMN did not perform well either. Although its precision is better than both BCC and
FCC for the single and top-3 suggestions, its recall is poorer in both cases. This is because of the
fact that BMN targets local variable method calls but there are many places in source code where
methods are called on fields, parameters, chained expressions or even static types. We performed
further experiments to elaborate on this issue in Section 4.3.1.

The results for AWT/Swing shown in the bottom four rows of Table I are consistent with those of
SWT. For example, for the top three proposals and for the largest subject system (NetBeans), the
F-measure of CSCC is higher by 15% compared to the closest performing technique.

To test whether CSCC performed significantly better than other techniques, we also performed
directional Wilcoxon Signed Rank Tests for the top three completion proposals between CSCC and
other techniques. The null hypothesis is that there is no difference in precision and recall values for
top-3 completion proposals. The test shows that the difference in precision and recall values
between CSCC and other techniques are statistically significant at the p value of 0.05.

4.3. Evaluation using a taxonomy of method calls

While the evaluation in Section 4.2 provides a ranking of the six techniques in terms of their performance,
it does not reveal what factors contribute to CSCC’s better performance. We hypothesize that it is because
of CSCC’s ability to capture a fuller context for method calls. To further shed light on this hypothesis, we
propose a taxonomy for the characteristics of a method context, and compare the techniques using each
category of method call characteristics within the taxonomy.

Our taxonomy (Figure 6) includes three categories of characteristics for the context of a target
method call: the AST node types for its receiver expression, the AST node types for its parent node
and the enclosing overridden method that contains the target method call. Although we cannot
guarantee that the taxonomy covers every possible aspect of method call completions, it can provide
insights into code completion techniques and can also help us to decide where more effort is needed.

We use the following procedure for our evaluation. For each category of method calls within each test
fold of a subject system, we count how many of them are correctly predicted by a code completion
technique. For each system, we then present the final result after adding the numbers for all ten test folds.

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



4.3.1. AST node type for receiver expression. We categorize the receiver expressions of the test
method calls according to their AST node types. We count the number of test method calls that each
code completion technique correctly recommends for each kind of AST node. Table II shows the
results for the top three proposals from the two largest test systems, Eclipse and NetBeans.

Table II suggests that the majority of receiver expressions fall in the simple name category. A simple
name can be a variable name (declared as a method parameter, a local variable or a field) or a type name
(static method calls). The original BMN technique considers only local variables and their types to
compute completion proposals. However, Table II shows that many receiver expressions of method
calls are not local variables, and thus for which BMN produces no recommendations. This explains
why we did not receive good results for BMN (Table I). The way BMN collects usage context is
quite limited. In contrast, CSCC can identify usage context even when the receiver is not a local
variable and thus can recommend method names for those cases too.

We performed another experiment where we train and test both BMN and CSCC using only those
method calls where the receiver is a local variable. For the top three proposals, BMN achieves 68%
recall and 77% precision for the Eclipse system, both of which are higher than those of any other
techniques except CSCC. The recall and precision for CSCC are 84% and 86%, respectively,
indicating that CSCC performs better than BMN even when the receivers are local variables.

4.3.2. AST node types of parent node. We consider those method call expressions where a particular
type of object or value is expected. For example, a framework method call can be located in the
condition part of an if statement that expects a boolean value. A method call can be located in the
right hand side of an assignment expression. If the left hand side of that assignment expression is of

Table II. Categorization of method calls for different AST node types for receiver expressions
(for the top-3 proposals).

Expression types

NetBeans Eclipse

Quantity (%)

Correctly
predicted
BMN (%)

Correctly
predicted
CSCC (%) Quantity (%)

Correctly
predicted
BMN (%)

Correctly
predicted
CSCC (%)

Array access 0.54 0 54.16 1.65 0 79.73
Class instance creation 0.18 0 100 0.11 0 100
Field access 0.60 0 80.77 0.49 0 77.27
Method invocation 21.66 0 94 11.88 0 75.42
Simple name Type 5.48 79.21 92.13 3.02 96.26 98.26

Local variable 32.13 68.26 84.85 41.86 0.64 83.14
Field 51.94 52.07 79.95 46.92 50 75.46
Parameter 10.44 52.80 79.35 9.47 46.81 79.50
Total 74.08 58.84 82.13 85.02 56.86 79.65

Qualified name 2.94 57.36 82.17 0.85 60.53 71.05

Figure 6. Taxonomy of method calls.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



Container type, the right hand side should return an object of type Container or a sub-type of it. The goal
is to identify how well techniques that consider type information as context perform in these cases
compared to others. To make the result comparable with the BMN code completion system, we
consider those method calls where the receiver is a local variable.

Table III shows the results of top three proposals for the Eclipse system. We can see that considering
the expected type as contextual information can help improve code completion techniques. That is why
the accuracy of BCC becomes close to that of CSCC, which achieves the highest accuracy for all but
one category of AST node. Other code completion systems, such as BMN, FCC and default code
completion systems of Eclipse, did not perform well in this experiment.

4.3.3. Overridden methods. The objective is to verify whether methods called from within overridden
methods impose any challenge to the evaluated code completion techniques. Our informal observation
is that it may be difficult to identify usage context for method calls within overridden methods. When we
manually analyze some of the code examples, we notice that method calls within overridden methods
may contain very limited contextual information. For example, a number of methods in Java Swing
applications result from implementing the ActionListener interface and those methods contain only a
few methods called on the receiver objects. This can affect the performance of those techniques that
leverage receiver method calls for making recommendations. Similar to the previous experiment we
test only those method calls where the receiver is a local variable. CSCC again performs better than
any other techniques in this experiment. Table IV summarizes the results of the study. While CSCC
correctly recommends more than 84% method calls for the top three recommendations for both
subject systems, none of the other technique achieves more than 58% accuracy.

We were interested to see whether we can take advantage of this special case. There are two possible
ways we can exploit the overriddenmethod. First, we can include the method name in the context. Second,
we can use the name to index training examples. To recommend a method call inside an overridden
method we can then access candidates by using receiver type name and overridden method name.

To check the first option, we explicitly add the overridden method name to both overall and line
contexts. It should be noted that CSCC may include the overridden method name as part of the
overall context, but only in the case where the overridden method name is located within four lines of
distance. In those cases the overall context may contain the overridden method name twice. This

Table III. Correctly predicted method calls where the parent expression expects a particular type of value
(top-3 proposals for the Eclipse system).

AST node types of parent node Total cases ECCAlpha ECCRel BCC FCC BMN CSCC

Method argument 696 6 441 527 378 336 553
Assignment 429 3 282 338 144 184 305
If statement 526 36 47 225 217 214 373
While statement 8 0 0 4 0 2 4
Return 99 1 56 62 38 32 65
Variable declaration fragment 1388 10 738 1018 498 515 1084
For statement 5 0 3 3 0 0 4
Class instance creation 126 3 76 95 46 54 98
Prefix expression 425 30 75 396 282 228 346
Total 3702 89 1718 2668 1603 1565 2832

2.4% 46.4% 72% 44.5% 42.27% 76.5%

Table IV. Percentage of correctly predicted method calls that are called in the overridden methods (for the
top-3 proposals).

Subject
systems

Percentage of correctly predicted method calls by Code Completion Systems (%)

ECCAlpha ECCRel BCC FCC BMN CSCC

Eclipse 4.98 15.19 55.56 55.12 57.04 84.28
NetBeans 12.00 33.60 52.20 52.34 56.25 85.24

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



even gives more weight on the overridden method name. For this experiment, we use Eclipse and
NetBeans as subject systems, and we test the accuracy of correctly predicting method calls within
overridden methods. Table V shows the percentage of correctly predicted method calls that are
located in overridden methods. For the Eclipse system, adding overridden method name to both
contexts results in an increase of 2.52%. For the NetBeans system, we also obtain a relative improvement of
1.75%. The results from the study thus suggest that adding overridden method names to the context
can help better model method call usage context for those that are located within overridden methods.

To check the second option, we again use Eclipse and NetBeans as subject systems. We indexed the
code examples by receiver type and enclosing method name and we test the accuracy of the correctly
predicted method calls for those test cases where the method calls appeared within an overridden
method. Table VI shows the results of the study. The results suggest that such an indexing scheme
will not be very effective. Although we can use the indexing scheme to correctly recommend
method calls, there are a number of cases where similar training examples may not be located inside
overridden methods with same name. Figure 7 shows an example of indexing method calls by

Table VI. Percentage of correctly predicted method calls that are called in the overridden methods (for the
top-3 proposals).

Recommendations
Subject systems

Eclipse NetBeans

Without index % With index % Without index % With index %

Top-3 83 73.4 83.10 70.9

Table V. Comparing performance (percentage of correctly predicted method calls) of CSCC at two different
settings. The default setting does not explicitly include method name to both contexts, but the second setting

does. Here, we only test those method calls that are located in overridden methods.

Recommendations

Subject systems

Eclipse NetBeans

Default Include overridden method name (%) Default Include overridden method name (%)

Top-3 80.93 83.68 81.36 82.61

Figure 7. Indexing method calls by enclosing method name can lead to the wrong recommendation.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



enclosing method name that can lead to wrong recommendation. Here, the target method call is
getStyledDocument. The top and the bottom examples represent two completion candidates.
Although the enclosing method name of the completion candidate B matches with that of the query
code (code under development, shown in the middle of the figure), the context does not match.
Instead the correct match should be the completion candidate A whose enclosing method name does
not match with that of the query code.

4.4. Comparison with code recommenders

Code Recommenders [38] is a more advanced Eclipse plugin evolved from BMN. It utilizes a model
trained using a set of code examples to provide intelligent code completion. When a developer invokes
code completion in the IDE, Code Recommenders collect the current usage context and then looks in
its model for possible matches to complete the code. Because the model is proprietary, we cannot train
it with new code examples. Furthermore, because we did not have access to its internal API to obtain
completion proposals automatically, we could only perform a manual comparison instead. Our
comparison indicates that CSCC performed better than Code Recommenders. Our comparison is
limited in scale because of its manual nature. Extensive evaluation may be possible in future if Code
Recommenders becomes more open.

From the code examples in a book on the Java Swing framework [39], we randomly selected 309
Swing/AWT method calls as our test cases. We enabled the Code Recommenders intelligent call
completion in an Eclipse IDE. Then for each test case, we manually opened the corresponding file
in the IDE, removed any code after the target object and tried to complete the method call by typing
a dot (.) after the object name. We recorded the list of completion proposals suggested by Code
Recommenders and determined the rank of the target method name in that list.

To obtain the performance result for CSCC, we trained CSCC with the remaining examples and
tested CSCC against the 309 selected method calls. CSCC achieves better result than Code
Recommenders. The precision, recall and F-measure for Code Recommenders are 62%, 76% and
68%, and for CSCC 92%, 82% and 87% respectively.

4.5. Runtime performance

To be useful, code completion must be done at near real-time in order to not interrupt a developer’s
flow of coding. Thus, to study the time required to suggest completion proposals, we measured the
runtime of the first and last two steps of CSCC. The first step is responsible for building a candidate
method call database and the last two steps are about recommending completion proposals. All
experiments were performed on a computer running Ubuntu Linux with a 3.40GHz Intel Core i7
processor and 10GB of memory.

As shown in Table VII, we provide runtime data for the Eclipse subject system where the model is
built using 40,863 method calls (column two) and the running time is the time required to test all 4540
queries (column three). As expected, the first step takes the most time but the database needs to be built
only once. On average, it takes 1.94ms to compute the completion proposals for each method call,
which is negligible.

To understand the benefits of using the inverted index structure, we also developed a variant of our
algorithm without using the inverted index structure and measured the runtime again. The result is
summarized in the second row of Table VII. While the model generation time reduces slightly, the
code completion running time increases considerably. Using the inverted index structure not only

Table VII. Runtime performance of CSCC generating a database of 40,863 method calls (column 2) and
performing 4540 code completions (column 3) for the Eclipse system.

Setup used Database generation time Code completion time

CSCC (with inverted index) 8066ms 8998ms (Avg.1.94ms)
Without inverted index 8000ms 12,888ms (Avg.2.77ms)

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



reduces the runtime of the algorithm, but also improves the result slightly by eliminating many
irrelevant mapping candidates.

5. DISCUSSION

5.1. Why does CSCC consider four lines as context?

For an API method call, we use four lines prior to the method call to determine the overall context. The
number four is determined experimentally as follows.

For this experiment, Eclipse is used as a subject system. We collect all SWT method calls and
randomly select 10% for testing. The remaining 90% of calls are used to train CSCC. Next, we run
the algorithm 10 times by varying context line numbers from one to ten. The higher the context line
number, the larger the context size, which results in an increase in computation time. We need to
keep the number of context lines as low as possible without impacting performance. Figure 8 shows
the accuracy of CSCC at various context line numbers. From Figure 8, we can see that at the
beginning, the number of correctly predicted method calls drops when we increase the context size
from one to two lines. However, we observe a sharp increase from that point for increasing the
context size. When the context size increases to more than four lines there is no significant change
in the number of correct predictions. Therefore, we set the context size to four lines.

5.2. Impact of different context information

We evaluate the impact of CSCC’s various context information on the performance of method call
prediction. We run an experiment on NetBeans, our largest Swing/AWT system.

Table VIII shows the percentage of correctly predicted method calls for different combinations of
context information. In the first row, we model the overall context considering those methods that
were previously called on the receiver object but without the enclosing method name. Next, we
consider a variation of the previous model that takes into account enclosing method name. For the
above two models, we neither consider any line context nor put any limit on context size. But all the
models in the following five rows use overall context to recommend completion proposals. The third
row corresponds to a model that only considers those method names that were previously called
within four lines of distance on the same receiver object of the target method call. The fourth row
represents a model that in addition to the above information, also considers the line context. The fifth
row corresponds to another model that in addition to the previous information, also considers any
other method names located within four lines of distance. The model in the sixth row takes into
account any type names (class or interface names) appearing as part of class instance creation plus
the previous information. Finally, the last row implements the complete CSCC, which also includes
any Java keywords except access specifiers.

According to the results, CSCC in the last row achieves the highest accuracy. It is also clear from the
table that the performance of CSCC is increasing with the addition of additional context information.

Figure 8. The number of correct predictions at different context size.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



Because adding the enclosing method name does not improve performance significantly (compare the first
two rows), we did not include enclosing method name in CSCC. Among various additional information
we considered, method names and the type names (appears in the class instance expression) contributed
the most. Although the addition of the line context improves the overall performance by only around
1%, during our manual investigation we found that in those small number of cases, overall context
differs considerably, so line context complements the overall context in this case. Surprisingly, adding
keyword names did not improve the performance significantly. We analyzed some cases manually and
found that while they are effective, their effect diminishes in the matching process because of the
presence of a large number of methods, and class/interface names in the context.

5.3. Effectiveness of the technique in cross-project prediction

We performed another experiment to evaluate the effectiveness of CSCC in cross project prediction. For
this experiment, we considered Swing/AWT library method calls for four subject systems. This includes
NetBeans, JEdit, ArgoUML and JFreeChart. We followed the approach described by Nguyen et al. [9].
We divide the data set of each system into ten different folds. For each system, we determine the
precision and recall values as follows. For each fold of a system, we trained with nine other folds of
the same system plus code examples from all other systems and then perform testing on the
remaining fold. We then calculate the average of precision and recall values. To make the results
comparable with BMN, we only provide prediction results for local variable method calls. Table IX
shows the results of our method call prediction.

CSCC once again performs better than other techniques. There are two important lessons to be
learned from the result. First, both precision and recall of CSCC either slightly increase or are
consistent with those of Table I, indicating that CSCC can recommend correct completion proposals
even when the training model contains examples from different systems. As long as we have relevant
usage contexts, CSCC can find them and can recommend completion proposals. Second, despite the
considerable increase in the size of the training model, we did not notice significant improvement in
performance. This seems to be consistent with Hindle et al.’s finding that the degree of regularity
across project is similar to that in a single project [5].

5.4. Performance of CSCC for other frameworks or libraries

We already evaluated the performance of CSCC for API method call completion using two libraries,
SWT and Swing/AWT. Both of them are used for developing graphical user interfaces. Thus, a threat
to the validity of the study is that the performance of CSCC may be different for a different
framework or library. We were interested to see whether the performance of CSCC is stable across
different frameworks or libraries. For answering the question, we conduct another study using java.io
and java.util method calls using two of our largest subject systems. The objective and usage pattern
of these library method calls are different than those used for developing graphical user interfaces.
The first one provides various API method calls to support system input and output, serialization and
the file system. The second one contains various utility classes to facilitate working with date, time,
collections and events.

Table VIII. Sensitivity of performance for different context information.

Model

Correctly predicted method calls (%)

Top-1 Top-3 Top-5 Top-10

Rec. method calls 46.5 69.5 77.5 82.5
Rec. method calls + enclosing method 46.6 68.7 76.9 81.8
Rec. method calls (within four lines) 33 60.20 76 84.80
Rec. method calls (within four lines) + line context 34.8 61.62 76.26 84.89
Previous factors + other method calls 58 78 83 87
Previous factors + type name 62 82 86 89
Previous factors + keyword (CSCC) 64 84 88 90

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



Table X shows comparison results of CSCC with five other state-of-the-art tools for the java.io API
method calls. Results from the study suggest that both ECCAlpha and ECCRelevance perform poorly
in the study. While the recall of BMN is lower than FCC, it achieves higher precision than FCC for the
top recommendation and for the Eclipse system. In all other cases FCC performs better than BMN for
both subject systems. Interestingly, BCC performs better than both FCC and BMN. While the precision
ranges from 47 to 58% for the top recommendation, the value increases to 70–81% for the top three
recommendations. CSCC mostly achieves better result than any other techniques. For example, for
the top position and for the Eclipse system CSCC achieves 15% more precision value (11% more
F-measure value) than its closest competitor. For the NetBeans system, CSCC achieves at least 14%
higher F-measure value than any other technique, 9% for the top three recommendations.

Table XI shows comparison results for the java.util API method calls. ECCAlpha, ECCRelevance
and BCC perform poorer than the other completion systems. Similar to the previous result CSCC
performs better than other code completion systems. For the top recommendation and for the
Eclipse system, CSCC achieves a minimum of 25% more precision value (15% for the top three
recommendations) than any other techniques. The technique also achieves at least 25% more recall
value (10% for the top three recommendations). Although for the NetBeans system the difference is
not that much, CSCC still performs the best.

5.5. Using bottom lines for building context

In the previous experiments we assume a top-down programming approach and we ignore the presence
of any code after the tested method call. Although our approach is consistent with the previous study [4]
we cannot guarantee that the code was developed in that way. It may be the case that the developer
copied the entire piece of code from a different place and performed edit operations. It may also be
the case that during the code review process a developer replaced a line or changed a method call on
the line with a different one. In such cases, we may leverage the bottom lines of code for building
context. Because of the lack of complete edit history we were unable to find those method calls only.
However, an alternative approach can be to go for the best situation, that is use the bottom lines of

Table IX. Cross-project prediction results. P, R and F refer to precision, recall and F-measure, respectively.

Subject systems FCC (%) BMN (%) CSCC (%)

NetBeans Top-1 P 39 46 69
R 100 90 98
F 56 61 81

Top-3 P 64 77 84
R 100 90 99
F 78 83 91

JEdit Top-1 P 57 70 66
R 100 84 98
F 73 76 79

Top-3 P 69 85 83
R 100 84 98
F 82 84 90

ArgoUML Top-1 P 48 48 54
R 100 85 100
F 65 61 70

Top-3 P 65 68 77
R 100 85 100
F 79 76 87

JFreeChart Top-1 P 43 44 68
R 100 89 100
F 60 59 81

Top-3 P 74 85 88
R 100 89 100
F 85 87 94

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



code already developed and test whether considering those lines with the top lines improve the
performance of our code completion systems.

For this experiment, we develop a new version of CSCC that uses both top and bottom four lines
including the line in which the method call appears to generate the usage context (Figure 9). For
evaluation, we use two of our largest subject systems, Eclipse and NetBeans. For Eclipse, we collect
the API method calls for the SWT library and for NetBeans we collect AWT and Swing API method
calls. We then use the ten-fold cross validation technique to compare the performance of new version
of CSCC with the old one.

Table X. Evaluation results of code completion systems for the java.io method calls.

Measurement

Code
completion
systems

Subject systems

Eclipse NetBeans

Top-1 Top-3 Top-10 Top-1 Top-3 Top-10

Precision ECCAlpha 0.038 0.10 0.19 0.036 0.10 0.24
ECCRelevance 0.13 0.27 0.29 0.14 0.30 0.57
BCC 0.58 0.81 0.96 0.47 0.70 0.94
FCC 0.47 0.72 0.91 0.38 0.63 0.89
BMN 0.53 0.75 0.77 0.34 0.79 0.80
CSCC 0.73 0.89 0.95 0.65 0.84 0.97

Recall ECCAlpha 1 1 1 1 1 1
ECCRelevance 1 1 1 1 1 1
BCC 1 1 1 1 1 1
FCC 1 1 1 1 1 1
BMN 0.89 0.89 0.89 0.73 0.73 0.73
CSCC 1 1 1 0.99 0.99 0.99

F-Measure ECCAlpha 0.073 0.18 0.32 0.07 0.18 0.39
ECCRelevance 0.23 0.43 0.32 0.25 0.46 0.73
BCC 0.73 0.90 0.98 0.64 0.82 0.97
FCC 0.64 0.84 0.95 0.55 0.77 0.94
BMN 0.66 0.81 0.83 0.46 0.76 0.76
CSCC 0.84 0.94 0.97 0.78 0.91 0.98

Table XI. Evaluation results of code completion systems for the java.util API method calls.

Measurement

Code
completion
systems

Subject systems

Eclipse NetBeans

Top-1 Top-3 Top-10 Top-1 Top-3 Top-10

Precision ECCAlpha 0.18 0.21 0.58 0.087 0.11 0.27
ECCRelevance 0.34 0.43 0.76 0.17 0.21 0.32
BCC 0.38 0.61 0.71 0.27 0.28 0.35
FCC 0.36 0.74 0.97 0.73 0.86 0.95
BMN 0.50 0.77 0.79 0.82 0.91 0.91
CSCC 0.75 0.92 0.97 0.87 0.94 0.96

Recall ECCAlpha 1 1 1 1 1 1
ECCRelevance 1 1 1 1 1 1
BCC 1 1 1 1 1 1
FCC 1 1 1 0.98 0.98 0.98
BMN 0.91 0.91 0.91 0.88 0.88 0.88
CSCC 0.99 0.99 0.99 0.98 0.98 0.98

F-Measure ECCAlpha 0.30 0.35 0.73 0.16 0.20 0.43
ECCRelevance 0.51 0.60 0.86 0.29 0.35 0.48
BCC 0.55 0.76 0.83 0.43 0.44 0.52
FCC 0.53 0.85 0.98 0.84 0.92 0.96
BMN 0.65 0.83 0.85 0.85 0.89 0.89
CSCC 0.85 0.95 0.98 0.92 0.96 0.97

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



Table XII compares the correctly predicted method calls for two different forms of CSCC. Here, the
term Top Context refers to the original version of the technique. The term Both Context refers to the
modified version of the technique that considers both top and bottom four lines to construct usage
context of method calls. Results from the study suggest that considering the bottom four lines does
not improve results for top three or top ten recommendations. However, we observe improvement for
the top recommendation. Although we find only 1% improvement of accuracy for the Eclipse system,
the number increases to 6% for the NetBeans system. This suggest that using bottom four lines for
building context can be useful.

6. EXTENDING CSCC FOR FIELD COMPLETION

After releasing CSCC as an Eclipse plugin we received a number of feedbacks from the users. Many of
them asked to extend the automatic code completion support for fields also. During our investigation we
find that field completions are not trivial because of the possibility of a large number of choices. The
objects we instantiate from different libraries and frameworks often contain a large number field
variables. Before calling methods on those objects we either assign values to those fields or we may
access them to check preconditions. Many of these fields are also constants. The problem is that there
are a large number of them and it is difficult for a developer to remember each of them. Although
classes define or inherit a large number of field variables from other classes, objects instantiated from
those classes only use a few of them in practice.

Fortunately, many of these field variables are meant to be used in distinct contexts. For example,
when we add a swing component to a container we need to state a field constant indicating the
location of the container where the component needs to be added. BorderLayout is a popular layout
manager that uses static field variables to represent various locations of a container. It supports both
absolute and relative positioning constants but mixing them can result in an unpredictable result.
Automatic code completion support can help in this regard by suggesting the correct positioning
constants. As another example, the java.awt.event class contains 78 field variables (67 of them are
used as field constants). However, depending on the context of using an event object, only a few of
them are meant to be accessed or used. For instance, while writing a piece of code for mouse
handling we need to access an event object to detect the mouse button pressed by a user. There are
only five field constants of the event object that can be used to determine different states of a mouse

Table XII. The number of correctly predicted method calls using two different forms of usage context.

Recommendations

CSCC

Eclipse NetBeans

Top context % Both context % Top context % Both context %

Top-1 62 63 64 70
Top-3 80 81 85 86
Top-10 90 90 91 91

Figure 9. An example of top and bottom overall context. When we use both top and bottom context, we
concatenated the terms appearing in the bottom context to the terms appearing in the top context.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



and other field constants are simply irrelevant in this context. Automatic code completion support can
help in this regard by recommending relevant field constants in top positions.

Figure 10 shows an example of a field access (see the top figure). The objective of the method is to
display information about the key that generates the event. Although the key event object has a
getChar() method, we can only rely on that if the event is a key typed event. Thus the event id is
checked using an if condition to determine whether the generated event is a key typed event. An
intelligent code completion system should suggest the correct completion proposal in the top places.
However, the default code completion systems of Eclipse did not perform well for this case.
ECCRelevance suggests the target code completion proposal in the tenth position and ECCAlpha
performs the worst, suggesting the target proposal in the 44th position. Developers typically call the
getId() method to collect the key id before using the field access. CSCC can collect this information
as usage context and can recommend the correct field access in the top position.

6.1. Changes made

Extending CSCC to support field completion was easy because of the simplicity of the technique. Recall
that the algorithm works in three steps where the first step deals with collecting usage examples for
target code completion. We change this step so that CSCC mines code examples to identify and
collect usage context of field accesses. The usage context of a field access consists of the same
information we use to capture the method call usage context.

We again use a two-level indexing scheme where the type name of the receiver object is used to group
all the fields that are used with that type and we use an inverted index structure to organize the group of
field accesses. When a developer requests for a field completion, we first determine the candidates for
the field completion and then synthesize the results to recommend the top-3 field names. These steps
are identical to those we described earlier for API method completion. In summary, CSCC did not
require major changes to support automatic field completion.

6.2. Evaluation procedure

We evaluate field completion of CSCC with four other state-of-the-art code completion systems. For a
given subject system, we determine locations of all field accesses where the receiver type matches with

Figure 10. Examples of field accesses (highlighted in bold).

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



the type name of the target framework or library. We then apply ten-fold cross validation technique to
collect evaluation results. Next, we use the precision, recall and F-measure to measure the performance
of each algorithm. These are same measures we used earlier for API method completion. The only
change is that instead of method calls we now consider field accesses.

The code completion systems we consider in this study besides CSCC are ECCAlpha,
ECCRelevance, FCC and BMN. ECCAlpha and ECCRelevance are the two default code completion
systems that also support automatic field completions. We include FCC in this study that sorts field
accesses based on their frequency in the training data. We exclude BCC from this study because the
current implementation of the tool does not support the field completion. We also include BMN in
this study to see whether the usage context BMN used to recommend method calls can be used to
recommend field accesses.

We consider two APIs (SWT and Swing/AWT) and all eight subject systems we used previously for
evaluating method call completion. Because developers request for a field completion in the same way
of a method completion (for example, in Eclipse this can be done by typing a dot after a receiver
name), we train each technique using both API field and method calls, but we test them for field
accesses only. For the four subject systems (Eclipse, Vuze, Subversive and Rsowl), we collect all
SWT field and method calls. We collect Swing/AWT field and method calls for the remaining four
subject systems.

6.3. Evaluation results

Table XIII shows the precision, recall and F-measure values for five code completion systems using
Eclipse and NetBeans as the subject systems. Unsurprisingly, both ECCAlpha and ECCRelevance
did not perform well in our field completion study. For example, for the Eclipse system,
ECCAlpha performs the worst. ECCRelevance becomes the second last, and it achieves better
precision, recall and F-measure values than ECCAlpha. Both FCC and BMN perform better than
the default code completion systems of Eclipse. BMN achieves higher accuracy for the top
position comparing to the FCC. While the precision of FCC is 52% for the top-3 positions, BMN
achieves 54%. We also do not observe much difference in recall and F-measure values. CSCC
achieves the highest F-measure value than any other code completion systems for the Eclipse
system. The technique achieves 12% higher precision value than its closest competitor for the
top-3 positions and the recall value is also high. For the remaining three subject systems that uses
SWT API, CSCC performs better than any other techniques considered in this study. While it has
precision 73–83%, the recall is 94–95%.

In general, for the remaining four systems that use Swing/AWTAPI, CSCC holds its position. It has a
precision of 61–85% and recall 87–96%. While for the top position CSCC achieves the highest
precision value, FCC achieves comparable performance as we increase the number of
recommendations. The performance of CSCC is also less significant compared with FCC this time.
This is because of the fact that the test cases have less possible completion candidates for systems
that use Swing/AWT API compared to those that use SWT. For example, NetBeans has less number
of completion candidates per query than the Eclipse system (see Figure 11). While BMN achieves
precision value similar to that of the previous four systems, the recall value drops, largest for the
NetBeans system. After investigation we found that for the NetBeans system a considerable number
of test case receivers (almost 50%) are other than simple name type and BMN could not make any
recommendations for those cases.

6.4. Training with method calls and field accesses together

In all the previous experiments, we train example-based code completion systems using only method
calls or field accesses. Therefore, given a receiver type the code completion systems retrieve either
method names or field accesses, not both. However, in an integrated development environment (such
as in the Eclipse IDE), when a developer requests for a code completion by typing dot (.) after a
receiver name, the target can be a method call or a field access. Therefore, it is required to train code
completion systems using both method calls and field accesses. However, given a receiver type, the

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



T
ab
le

X
II
I.
E
va
lu
at
io
n
re
su
lts

of
co
de

co
m
pl
et
io
n
sy
st
em

s
fo
r
fi
el
d
ac
ce
ss
es
.

S
ub
je
ct

sy
st
em

s

P
re
ci
si
on

R
ec
al
l

F
-M

ea
su
re

E
C
C
A
lp
ha

E
C
C
R
el

F
C
C

B
M
N

C
S
C
C

E
C
C
A
lp
ha

E
C
C
R
el

F
C
C

B
M
N

C
S
C
C

E
C
C
A
lp
ha

E
C
C
R
el

F
C
C

B
M
N

C
S
C
C

E
cl
ip
se

T
op
-1

0.
01

0.
09

0.
24

0.
29

0.
39

1
1

1
0.
95

0.
95

0.
02

0.
16

0.
38

0.
44

0.
55

T
op
-3

0.
02

0.
23

0.
52

0.
54

0.
70

1
1

1
0.
95

0.
95

0.
04

0.
36

0.
69

0.
69

0.
81

T
op
-1
0

0.
19

0.
45

0.
74

0.
74

0.
89

1
1

1
0.
95

0.
95

0.
31

0.
62

0.
85

0.
83

0.
92

V
uz
e

T
op

-1
0.
02

0.
09

0.
28

0.
28

0.
42

1
1

1
0.
91

0.
94

0.
03

0.
16

0.
44

0.
42

0.
58

T
op
-3

0.
03

0.
22

0.
56

0.
54

0.
73

1
1

1
0.
91

0.
94

0.
05

0.
36

0.
71

0.
68

0.
83

T
op
-1
0

0.
18

0.
42

0.
77

0.
72

0.
92

1
1

1
0.
91

0.
94

0.
30

0.
60

0.
87

0.
81

0.
93

S
ub
ve
rs
uv
e

T
op

-1
0.
00

0.
03

0.
31

0.
30

0.
40

1
1

1
0.
89

0.
95

0.
01

0.
05

0.
48

0.
45

0.
57

T
op
-3

0.
01

0.
06

0.
58

0.
60

0.
73

1
1

1
0.
89

0.
95

0.
09

0.
11

0.
74

0.
71

0.
83

T
op
-1
0

0.
20

0.
41

0.
82

0.
74

0.
94

1
1

1
0.
89

0.
95

0.
34

0.
58

0.
90

0.
81

0.
94

R
so
w
l

T
op

-1
0.
01

0.
07

0.
22

0.
14

0.
46

1
1

1
0.
82

0.
94

0.
01

0.
13

0.
37

0.
24

0.
62

T
op
-3

0.
02

0.
15

0.
50

0.
28

0.
83

1
1

1
0.
82

0.
94

0.
04

0.
27

0.
67

0.
42

0.
88

T
op
-1
0

0.
07

0.
23

0.
78

0.
58

0.
94

1
1

1
0.
82

0.
94

0.
13

0.
38

0.
88

0.
68

0.
94

N
et
B
ea
ns

T
op
-1

0.
11

0.
30

0.
35

0.
21

0.
43

1
1

1
0.
46

0.
95

0.
19

0.
46

0.
51

0.
30

0.
59

T
op
-3

0.
16

0.
50

0.
60

0.
49

0.
71

1
1

1
0.
46

0.
95

0.
28

0.
66

0.
75

0.
48

0.
82

T
op
-1
0

0.
38

0.
79

0.
90

0.
87

0.
90

1
1

1
0.
46

0.
95

0.
55

0.
88

0.
95

0.
61

0.
93

JE
di
t

T
op

-1
0.
04

0.
19

0.
21

0.
26

0.
32

1
1

1
0.
69

0.
78

0.
08

0.
31

0.
35

0.
37

0.
45

T
op
-3

0.
07

0.
46

0.
54

0.
57

0.
61

1
1

1
0.
69

0.
78

0.
13

0.
63

0.
70

0.
62

0.
68

T
op
-1
0

0.
35

0.
69

0.
79

0.
72

0.
75

1
1

1
0.
69

0.
78

0.
52

0.
81

0.
88

0.
70

0.
76

A
rg
oU

M
L

T
op

-1
0.
01

0.
16

0.
26

0.
25

0.
31

1
1

1
0.
70

0.
87

0.
01

0.
27

0.
41

0.
36

0.
46

T
op
-3

0.
03

0.
39

0.
60

0.
56

0.
65

1
1

1
0.
70

0.
87

0.
05

0.
57

0.
74

0.
62

0.
74

T
op
-1
0

0.
21

0.
71

0.
81

0.
71

0.
85

1
1

1
0.
70

0.
87

0.
35

0.
83

0.
89

0.
70

0.
86

JF
re
eC

ha
rt

T
op
-1

0.
32

0.
40

0.
48

0.
47

0.
56

1
1

1
0.
90

0.
96

0.
48

0.
57

0.
65

0.
61

0.
71

T
op
-3

0.
39

0.
59

0.
75

0.
71

0.
85

1
1

1
0.
90

0.
96

0.
56

0.
74

0.
85

0.
80

0.
90

T
op
-1
0

0.
57

0.
66

0.
95

0.
90

0.
97

1
1

1
0.
90

0.
96

0.
73

0.
79

0.
97

0.
90

0.
96

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



system can retrieve both method calls and field accesses whose receiver type matches with the target
receiver type. This larger set of code completion candidates can affect the performance of code
completion systems. To determine how this affects their performance, we conduct the experiment of
field completion proposals for the largest two subject systems (Eclipse and NetBeans). This time we
train each technique using both method calls and field accesses (i.e., setting A), and using only field
accesses (i.e., setting B). The test data sets are identical to the previous study on evaluating field
completion proposals. We exclude the default code completion systems of Eclipse (ECCAlpha and
ECCRel) because they do not require any training.

Table XIV shows accuracy (in percentage) of three example-based code completion systems for two
different subject systems. As shown in the table, there is a little or no effect of training code completion
systems using only fields for the Eclipse system. When we investigate setting A further, it reveals that in
general the query completion candidates retrieved for field completion overlap very little with those for
method completion. For the NetBeans system, the completion candidates per query retrieved by the
receiver type contain higher percentage of methods than the Eclipse system. That is why we notice
changes in accuracy between two different settings for the NetBeans system. For example, FCC
achieves more than 10% accuracy for the top three recommendations when training with only fields.
BMN is no exception, and the least affected code completion system is the CSCC with only around
1% change in accuracy between two different settings. It has two important implications. First, CSCC
can easily be adapted to different forms of recommendations with little changes. This is because of
the simplicity in usage context construction, synthesizing examples and recommendation formulation
of the technique. Second, despite the simplicity, the usage context used by the CSCC is generic in
nature and can easily capture different usage scenarios. Thus, CSCC can support both method and
field completions without making any significant changes.

Figure 11. Distribution of test cases in different candidate groups. We group the test cases into four categories
based on the number of completion candidates. X-axis positions four different groups, and the Y-axis value

refers to the percentage of test cases in a group.

Table XIV. The accuracy (in percentages) of correctly predicted field accesses for two different settings. For
setting A, we train code completion systems using both fields and methods. For setting B, we only use fields

for training. Both settings use fields for testing.

subject
Systems

Code
completion
systems

Accuracy (%)

Top-1 Top-3 Top-10

A B A B A B

Eclipse FCC 23.09 23.10 51.53 51.56 74.77 74.79
BMN 27.45 27.71 52.74 52.84 72.22 72.47
CSCC 39.23 39.96 71.24 70.01 89.98 89.64

NetBeans FCC 33.92 36.57 59.33 69.63 90 92.53
BMN 10.92 14.25 25.36 28.27 45.31 47.09
CSCC 43.17 44.58 70 71.12 88.34 89.43

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



7. COMPARISON WITH STATISTICAL LANGUAGE MODEL-BASED CODE COMPLETION
TECHNIQUES

A statistical language model computes either a probability distribution over a sequence of words or the
likelihood of occurring a word wn given a sequence of prior words. These models show great promise in
various software engineering tasks. This includes, but not limited to predicting source code comments
[40], locating syntax errors in source code [41], and identifying coding conventions [42]. These
techniques become successful because of the high degree of repetition and repetitiveness that exist in
source code. A number of code completion techniques has been recently developed leveraging
statistical language models. We are interested in evaluating the effectiveness of those techniques in
completing method or field accesses and compare the result with CSCC. Unless otherwise specified
we now use the term code completion to refer to both.

7.1. Statistical language models

We consider four statistical language model based code completion techniques and CSCC in this study.
This includes N-gram, Cache LM, CACHECA and GraLan [5, 6, 10, 13]. N-gram identifies naturally
occurring sequences of tokens in source code. Given a token sequence, N-gram identifies those
tokens that tend to follow that token sequence in corpus. Cache LM improves the performance of
traditional N-gram model by capturing locally repetitive token sequences using a cache component.
We add Cache LM in our study to find the effectiveness of the cache component for code
completion. CACHECA becomes the third technique in our study, and we include it to determine
whether combining Eclipse suggestions with Cache LM leads to better result or not.

Unlike the previous three techniques that work at the lexical level, GraLan works at the statistical and
data dependency level. We do not include SLANG in this study because GraLan showed better code
suggestion accuracy than the technique and we have already included GraLan in this study. We do
not consider SLAMC in this study because the tool is not available at the time of writing the paper.
We include ECCRel in this study because CACHECA merges results of ECCRel with that of Cache
LM. We are interested to identify the performance improvement of CACHECA over ECCRel.

For the N-gram, we use a trigram language model. For the Cache LM, we set the cache scope to the
current file or related files (file cache). For cache size and order, default settings are used. We also enable
the back-off technique for cache-LM. GraLan requires two parameters. The first parameter (θ) is used to
limit the number of API calls that are used to discover context subgraphs. The second parameter (δ) is
used to limit the number of context graphs. Same as in [6], we set both values to 8.

7.2. Evaluation procedure

We use the ten-fold cross validation to measure the performance of each technique. To train these
techniques folds are created based on source files. This means that all framework method calls appear
in a source file are either used for training or for testing. We create each fold in such a way that they
contain equal number of framework method calls, although the number of source files can be
different. We use the same eight subject systems we used in the previous experiment. We collect all
SWT method calls and field accesses for the first four subject systems (Eclipse, Vuze, Subversive,
and Rsowl) and for the remaining four subject systems (NetBeans, JFreeChart, JEdit, ArgoUML) we
collect all Swing/AWT method calls and field accesses.

To make the result comparable with Cache LM, we use the Mean Reciprocal Rank (MRR) and top-k
accuracy in this study. For each framework method calls/field accesses in the test data, each technique
produces a ranked list of suggestions. The reciprocal rank is calculated by taking the multiplicative
inverse of a rank. Mean reciprocal rank is the average of reciprocal ranks for all n framework
method calls in the test data. This can be defined as follows:

MRR ¼ 1
n

Xn

i¼1

1
ranki

(4)

where ranki denotes the rank of the ith test method call or field access. If a suggestion list does not
contain the correct answer we use reciprocal rank 0. We also measure the top-k suggestion accuracy

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



for each technique, which is the ratio of the number of cases a technique produces the correct
recommendation within the top-k recommendations over the total number of test cases. We report
results for top-1, top-3 and top-10 positions.

7.3. Evaluation results

Table XV shows the results of our study. We compare CSCC with the four statistical language models
(N-gram, CacheLM, CACHECA and GraLan) in terms of MRR, Top-1, Top-3 and Top-10 accuracies,
by performing the directional Wilcoxon Signed Rank statistical test. The tests reveal that CSCC in most
cases either outperforms or performs equally well as GraLan, which is the best performing among the
statistical language models we examined. This is because of the fact that the technique leverages API
usage graphs for recommending method calls or field accesses. For the first four systems, the
accuracy of GraLan ranges from 57 to 71% for the top-3 recommendations. The value ranges from
54 to 76% for the bottom four systems.

As expected, N-gram obtains the lowest accuracy and MRR value among all statistical language
model techniques. However, N-gram performs better than EccRel, indicating that prior code context
leads to better result than using only static type information. Cache LM augments the N-gram model
with a cache component that results in performance improvement. While the MRR of N-gram ranges

Table XV. Comparing CSCC with four statistical language model-based techniques (N-gram, Cache LM,
CACHECA and GraLan). Because CACHECA merges results of ECCRel with those of Cache LM, we also

include ECCRel in the comparison.

Subject systems

Code completion techniques

N-gram Cache LM EccRel CACHECA GraLan CSCC

Eclipse MRR 0.24 0.39 0.15 0.30 0.60 0.61
Top-1 0.13 0.29 0.07 0.17 0.44 0.46
Top-3 0.30 0.45 0.16 0.35 0.71 0.70
Top-10 0.47 0.59 0.32 0.66 0.84 0.85

Vuze MRR 0.34 0.44 0.13 0.26 0.59 0.60
Top-1 0.23 0.35 0.06 0.13 0.34 0.45
Top-3 0.41 0.51 0.14 0.27 0.59 0.69
Top-10 0.57 0.65 0.29 0.64 0.80 0.80

SubVersive MRR 0.36 0.43 0.10 0.34 0.58 0.68
Top-1 0.25 0.32 0.03 0.18 0.42 0.52
Top-3 0.44 0.52 0.06 0.44 0.63 0.76
Top-10 0.57 0.64 0.30 0.69 0.83 0.86

Rsowl MRR 0.36 0.48 0.20 0.43 0.49 0.59
Top-1 0.24 0.36 0.12 0.28 0.30 0.42
Top-3 0.45 0.57 0.23 0.51 0.57 0.64
Top-10 0.61 0.71 0.33 0.77 0.75 0.72

NetBeans MRR 0.43 0.52 0.33 0.48 0.70 0.68
Top-1 0.31 0.40 0.19 0.31 0.50 0.54
Top-3 0.54 0.62 0.40 0.59 0.76 0.75
Top-10 0.66 0.74 0.61 0.82 0.88 0.86

JEdit MRR 0.25 0.42 0.23 0.38 0.60 0.58
Top-1 0.15 0.33 0.11 0.21 0.37 0.34
Top-3 0.31 0.49 0.29 0.51 0.63 0.53
Top-10 0.48 0.61 0.41 0.71 0.74 0.61

ArgoUML MRR 0.30 0.45 0.31 0.47 0.54 0.59
Top-1 0.20 0.35 0.15 0.32 0.32 0.41
Top-3 0.37 0.53 0.37 0.57 0.54 0.56
Top-10 0.48 0.64 0.66 0.78 0.69 0.65

JFreeChart MRR 0.38 0.63 0.29 0.53 0.57 0.64
Top-1 0.26 0.54 0.18 0.38 0.35 0.46
Top-3 0.46 0.69 0.29 0.62 0.69 0.74
Top-10 0.65 0.82 0.61 0.93 0.89 0.88

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



from 24% to 43%, for the CacheLM the value ranges from 39% to 63%. The number of correct
recommendations for the top position is also much higher than the N-gram technique. However,
Cache LM may fail to recommend those method calls or field accesses in top positions that are not
locally repetitive. CACHECA combines the recommendations of cache LM with that of Eclipse.
However, we observe that the strategy CACHECA uses to combine recommendations from two
different sources affect the MRR value. CACHECA can recommend those cases where CacheLM
fails but with a sacrifice of the MRR value. The MRR of CACHECA ranges from 26% to 53%. The
accuracy of top-3 recommendations ranges from 27% to 62%.

In general CSCC performs the best comparing all other techniques. While the accuracy ranges from
46 to 74%, the MRR ranges from 58 to 68%. Despite the simplicity CSCC shows better performance
than GraLan. When we investigate the reason we found that CSCC is able to recommend suggestions
in more cases than GraLan. For example, there are cases where the prior context is empty for
GraLan. Although GraLan cannot recommend in those cases CSCC can because it either finds
context or considers empty context for recommending suggestions. We also observe a few cases
where GraLan outperforms CSCC. For example, GraLan performs better than CSCC for all metric
values for the JEdit system and three out of the four metric values of the NetBeans system. It would
be interesting to investigate in future why GraLan does better in these cases.

Overall, CSCC shows better performance than statistical language model-based techniques. We
investigate whether performance improvement of CSCC is statistically significant. We perform
directional Wilcoxon Signed Rank Test for the MRR and accuracy at top-1, top-3 and top-10
recommendations. The null hypothesis is that there is no difference in MRR or accuracy values. The
tests show that the difference in accuracy at top-1 is statistically significant at the p value of 0.05.
However, the result is not statistically significant for MRR or accuracy at top-3 and top-10
recommendations. We conclude that CSCC outperforms GraLan for top-1 recommendation and
performs equally well in other cases (MRR and accuracy at top-3 and top-10 recommendations).

7.4. How good CSCC is in recommending locally repetitive method calls or field accesses?

Previous experiment shows that a cache component is helpful to capture the locally repetitive method
calls or field accesses that are otherwise difficult to detect by the N-gram model. This raises the
following question: is CSCC capable of capturing those locally repetitive calls? We conduct a study
to answer the question. We use the same ten-fold cross validation technique, but this time we collect
those field accesses or method calls for testing that appear more than once in a file. We exclude those
that appear only once in a file. We also exclude the first occurrence of those calls from testing that
appear multiple times in a file because a cache language model may fail to recommend them because
of a cache miss. We conduct the experiment using two of our largest subject systems, Eclipse and
NetBeans. For the Eclipse system, we collect SWT field accesses and method calls. For the NetBeans
system, we collect Swing/AWT library field accesses and method calls. Table XVI summarizes
results of our study. For both systems, CSCC obtains similar or slightly better MRR metric values
than Cache LM. While for the top position Cache LM achieves better result than CSCC (7% higher
than CSCC for the Eclipse system and 4% higher for the NetBeans system), performance improves
with the increase of number of recommendations. For example, CSCC obtains 5% higher accuracy
than Cache LM for the top-3 positions. These indicate that CSCC is able to recommend locally
repetitive field or method calls with good accuracy.

Table XVI. Comparison of CSCC with Cache LM considering locally repetitive method calls and field
accesses.

Techniques

Eclipse NetBeans

MRR Top-1 Top-3 Top10 MRR Top-1 Top-3 Top-10

CSCC 0.63 0.47 0.75 0.88 0.71 0.56 0.79 0.90
Cache LM 0.63 0.54 0.70 0.77 0.70 0.60 0.81 0.88

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



8. THREATS TO VALIDITY

In this section, we briefly describe several threats to the validity of this study.
First, we considered only two APIs during the evaluation of field completion. One can argue that the

result may be different for a different framework or library. While it can be beneficial to test with
additional libraries for other reasons, given that CSCC does not directly rely on these libraries, we
believe that this is highly unlikely and that the results we obtain in this paper should largely carry
over to additional libraries. Moreover, we tested CSCC for method call completion for two different
libraries other than those two used in the evaluation of field completion. Results from that study also
suggest that the performance of CSCC is not affected by the kind of library.

Second, we re-implement the BMN system because both the data and implementation of the
technique are not available. We also re-implement GraLan because of lack of its implementation.
However, instead of working from the scratch we reuse the implementation of Groum for
identifying API usage graphs. Although we cannot guarantee that our replication of these techniques
does not contain any errors, we have spent a considerable amount of time implementing and testing
the technique to minimize the possibility of introducing errors.

Third, in this study we only consider top four lines to determine the context of a method call because
we assume a developer is typing code in a top-down manner, which is consistent with previous studies
[4]. However, it is also possible that a developer can edit existing code, in which case we can use both
top and bottom lines of a method call to create context. Although we conduct an experiment to see the
benefit of generating context using both top and bottom four lines, we cannot guarantee that the code
was developed in the same way as we tested it because of the lack of a change based software repository.

Fourth, we compare CSCC with GraLan to determine the effectiveness of using a graph based
statistical language model in method call completion. The API code suggestion engine of GraLan
allows users to adjust two parameter values. One can argue that the accuracy of GraLan can be
improved by adjusting those parameter values. We would like to point out that we use the same
settings used in the GraLan study [6]. It might be possible to further fine-tune GraLan
implementation by changing parameter values as a future work.

Fifth, to compare GraLan with CSCC we use the mean reciprocal rank (MRR) and the top-k accuracy
metrics. We chose these metrics because they were used by previous code completion studies [9, 10],
thus providing a common way of comparison. As future work we would also be able to compare
CSCC with GraLan by considering training time, recommending time, total memory or external
space usage.

Finally, statistical language model-based code completion techniques (i.e., N-gram, Cache LM and
CACHECA) were originally developed for recommending a variety of tokens whereas CSCC is
designed to recommend method calls and field accesses. Thus, statistical language model-based code
completion techniques are typically evaluated considering all token kinds. Although it could be
possible to adjust those techniques for recommending specifically method calls and field accesses, for
example, by training the models with only method calls or field accesses, we did not do that. This is
because we were interested in identifying the effectiveness of statistical language models in
recommending method calls.

9. CONCLUSION

In this paper, we present a simple, efficient, scalable, context-sensitive code completion technique,
called CSCC. CSCC mines previous code examples to recommend completion proposals. CSCC is
simple because it is based on tokenization, instead of parsing or other more advanced analysis. It is
efficient and scalable because of its ways of measuring context similarity: using simhash first as a
coarse-grained but efficient filter, and LCS/Levenshtein distance second as a refined, more accurate
similarity metrics. We have compared CSCC with other state-of-the-art code completion systems
using two popular libraries. CSCC performed better than state-of-the-art static type or context-
sensitive, example-based systems considered in our study. We then propose a taxonomy of method
calls to identify the effect of different context elements on code completion techniques.

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



CSCC utilizes a simple form of usage context. It collects any method names, any keywords except
access specifiers, any class or interface names that occurs within the top four lines including the line in
which a method call appears prior calling a method. Although we initially developed and tested CSCC
for method call completion, we later found that the usage context information is not limited to method
calls only. We conduct a study to see whether CSCC can support the field completion using the same
usage context information we collect for method calls. The results from the study suggest that CSCC
can easily support field completions with little changes.

Finally, we compare CSCC with four statistical language models. CSCC not only outperforms all
three techniques that work at the lexical level, but also in most cases performs better or equally well
with GraLan, the state-of-the-art graph-based language model that leverages API usage graphs to
recommend API elements. The code of CSCC and data files used in this experiment can be found
online [43]. We also implement the technique as an Eclipse plugin which is also available online for
public use [43].

ACKNOWLEDGEMENTS

We would like to thank Marcel Bruch and Andreas Sewe for providing useful comments and explaining
APIs of Code Recommenders.

REFERENCES

1. Murphy GC, Kersten M, Findlater L. How are java software developers using the eclipse IDE? IEEE Software 2006;
23(4):76–83.

2. Robbes R, Lanza M. How program history can improve code completion, in Proc. ASE, L’Aquila, Italy, 2008; 317–326.
3. Hou D, Pletcher DM. Towards a better code completion system by API grouping, filtering, and popularity-based

ranking, in Proc. RSSE, Cape Town, South Africa, 2010; 26–30.
4. Bruch M, Monperrus M, Mezini M. Learning from examples to improve code completion systems, in Proc. FSE,

Amsterdam, The Netherlands, 2009; 213–222.
5. Hindle A, Barr ET, Su Z, Gabel M, Devanbu P. On the naturalness of software, in Proc. ICSE, Zurich, Switzerland,

2012; 837–847.
6. Nguyen AT, Nguyen TN. Graph-based statistical language model for code, in Proc. ICSE, Florence, Italy, 2015;

858–868.
7. Charikar MS. Similarity estimation techniques from rounding algorithms, in Proc. STOC, Montreal, Quebec, Canada,

2002; 380–388.
8. Hou D, Pletcher DM. An evaluation of the strategies of sorting, filtering, and grouping API methods for Code

Completion, in Proc. ICSM, Williamsburg, VI, 2011; 233–242.
9. Nguyen TT, Nguyen AT, Nguyen HA, Nguyen TN. A statistical semantic language model for source code, in Proc.

FSE, Saint Petersburg, Russia, 2013; 532–542.
10. Tu Z, Su Z, Devanbu P. On the localness of software, in Proc. FSE, Hong Kong, China, 2014; 269–280.
11. Asaduzzaman M, Roy CK, Schneider KA, Hou D. CSCC: simple, efficient, context sensitive code completion, In

Proc. ICSME, Victoria, BC, Canada, 2014; 71–80.
12. Pletcher DM, Hou D. BCC: enhancing code completion for better API usability, in Proc. ICSM, Edmonton, AB,

2009; 393–394.
13. Franks C, Tu Z, Devanbu P, Hellendoorn V. CACHECA: a cache language model based code suggestion tool, in

Proc. ICSE, Florence, Italy, 2015; 705–708.
14. Raychev V, Vechev M, Yahav E. Code completion with statistical language models, in Proc. PLDI, Edinburgh,

United Kingdom, 2014; 419–428.
15. Nguyen AT, Nguyen HA, Nguyen TT, Nguyen TN. GraPacc: a graph-based pattern-oriented, context-sensitive code

completion tool, in Proc. ICSE, Zurich, Switzerland, 2012; 1407–1410.
16. Nguyen AT, Nguyen TT, Nguyen HA, Tamrawi A, Nguyen HV, Al-Kofahi J, Nguyen TN. Graph-based pattern-

oriented, context-sensitive source code completion, in Proc. ICSE, Zurich, Switzerland, 2012; 69–79.
17. Holmes R, Murphy GC. Using structural context to recommend source code examples, in Proc. ICSE, St. Louis, MO,

USA, 2008; 117–125.
18. Mooty M, Faulring A, Stylos J, Myers BA. Calcite: completing code completion for constructors using crowds, in

Proc. VLHCC, Leganes, Spain, 2010; 15–22.
19. Zhang C, Yang J, Zhang Y, Fan J, Zhang X, Zhao J, Ou P. Automatic parameter recommendation for practical API

usage, in Proc. ICSE, Zurich, Switzerland, 2012; 826–836.
20. Hill R, Rideout J, Automatic method completion, in Proc. ASE, Linz, Austria, 2004; 228–235.
21. Lee YY, Harwell S, Khurshid S, Marinov D. Temporal code completion and navigation, in Proc. ICSE, San

Francisco, CA, USA, 2013; 1181–1184.
22. Jacobellis J, Meng N, Kim M. Cookbook: in situ code completion using edit recipes learned from examples, in

Companion Proc. ICSE, Hyderabad, India, 2014; 584–587.

A SIMPLE, EFFICIENT, CONTEXT-SENSITIVE APPROACH FOR CODE COMPLETION

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr



23. Little G, Miller RC. Keyword programming in java, in Proc. ASE, Atlanta, Georgia, USA, 2007; 84–93.
24. Han S, Wallace DR, Miller RC. Code completion from abbreviated input, in Proc. ASE, Auckland, New Zealand,

2009; 332–343.
25. Omar C, YoonYS, LaToza TD,Myers BA. Active code completion, in Proc. ICSE, Zurich, Switzerland, 2012; 859–869.
26. Introduction to information retrieval. (Available from: http://www-nlp.stanford.edu/IR-book/) (Accessed on

February 2014).
27. Manku GS, Jain A, Sarma AD. Detecting near-duplicates for web crawling, in Proc. WWW, Banff, Alberta, Canada,

2007; 141–150.
28. Uddin MS, Roy CK, Schneider KA, Hindle A. On the effectiveness of simhash for detecting near-miss clones in

large scale software systems, in Proc. WCRE, Limerick, Ireland, 2011; 13–22.
29. Bruch M, Schäfer T, Mezini M. On evaluating recommender systems for API usages, in Proc. RSSE, Atlanta,

Georgia, 2008; 16–20.
30. The eclipse. (Available from: http://www.eclipse.org/) (Accessed on February 2014).
31. The Vuze. (Available from: http://www.vuze.com/) (Accessed on February 2014).
32. The Subversive. (Available from: https://www.eclipse.org/subversive/) (Accessed on February 2014).
33. The RSSOwl. (Available from: http://www.rssowl.org/ (Accessed on February 2014).
34. The NetBeans. (Available from: https://netbeans.org/) (Accessed on February 2014).
35. The jEdit. (Available from: http://sourceforge.net/projects/jedit/) (Accessed on February 2014).
36. The ArgoUML. (Available from: http://argouml.tigris.org/) (Accessed on February 2014).
37. The JFreeChart. (Available from: hhttp://sourceforge.net/projects/jfreechart/) (Accessed on February 2014).
38. The code recommenders. (Available from: http://www.eclipse.org/recommenders/) (Accessed on February 2014).
39. Code Examples. (Available from: http://examples.oreilly.com/jswing2/code/) (Accessed on February 2014).
40. Movshovitz-Attias D, Cohen WW. Natural language models for predicting programming comments, in Proc. ACL,

Sofia, Bulgaria, 2013; 35–40.
41. Campbell JC, Hindle A, Amaral JN. Syntax errors just aren’t natural: improving error reporting with language

models, In Proc. WCRE, Hyderabad, India, 2014; 252–261.
42. Allamanis M, Barr ET, Bird C, Sutton C. Learning natural coding conventions, In Proc. FSE, Hong Kong, China, 2014;

281–293.
43. The CSCC. (Available from: http://asaduzzamanparvez.wordpress.com/cscc/) (Accessed on February 2014).

MUHAMMAD ASADUZZAMAN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
DOI: 10.1002/smr

http://www-nlp.stanford.edu/IR-book/
http://www.eclipse.org/
http://www.vuze.com/
https://www.eclipse.org/subversive/
http://www.rssowl.org/
https://netbeans.org/
http://sourceforge.net/projects/jedit/
http://argouml.tigris.org/
http://hhttp://sourceforge.net/projects/jfreechart/
http://www.eclipse.org/recommenders/
http://examples.oreilly.com/jswing2/code/
http://asaduzzamanparvez.wordpress.com/cscc/

