
Recommending Framework Extension Examples

Abstract—The use of software frameworks enables the delivery
of common functionality but with significantly less effort than
when developing from scratch. To meet application specific re-
quirements, the behavior of a framework needs to be customized
via extension points. A common way of customizing framework
behavior is by passing a framework related object as an argument
to an API call. Such an object can be created by subclassing an
existing framework class or interface, or by directly customizing
an existing framework object. To do this effectively requires
that application developers have extensive knowledge of the
framework’s extension points and their possible interactions. To
aid the developers in this regard, we propose and evaluate a graph
mining approach for extension point management. Specifically,
our approach mines large amounts of code examples to discover
all extension points and their patterns for each framework
class. Furthermore, we propose a taxonomy of extension patterns,
which categorizes the various ways an extension point has been
used in the code examples. Given a framework class that is being
used, our approach aids the developer by following a two-step
recommendation process. In the first step, it recommends all the
extension points that are available in the class. Once the developer
chooses an extension point, our approach then discovers all of its
usage patterns and recommends the best code examples for each
pattern. Using five frameworks, we evaluate the performance of
the two-step recommendation, in terms of precision, recall, and
F-measure. We also report several statistics related to framework
extension points.

Index Terms—API, framework, reuse, graph mining, recom-
menders

I. INTRODUCTION

A software framework is a reusable implementation of
some generic functionality that saves both development time
and effort for a client. However, to meet application specific
requirements, a developer often needs to customize aspects of
the framework (extension points). One common way to do so
is to pass a framework related object as an argument in an API
call. The argument object essentially encapsulates a specific
way to customize the framework. The object may be created
by subclassing a framework class, implementing a framework
interface, or by customizing the properties of an existing
object. In this case, we consider the formal parameter of the
API call as an extension point. As an example of an extension
point, Figure 1(A) shows that the size of a JFrame is set
to a Dimension object. Some additional but more interesting
examples from JTree are TreeModel, TreeCellEditor, TreeCell-
Renderer, and TreeExpansionListener. These extension points
allow a developer to gain finer control over the behavior of
framework classes such as JFrame and JTree.

Given an extension point, there are often multiple different
ways to use it. Consider TreeCellRenderer as an example,
which controls how a tree node is rendered by passing it as
an argument to the setCellRenderer method of the JTree class.

Fig. 1. Examples of framework extension points (Dimension and TreeCell-
Renderer) and extension patterns

There are three different ways to customize the cell rendering
behavior of JTree:

1) One can call the setCellRenderer method with an object
of the existing framework class DefaultTreeCellRenderer,
which implements the TreeCellRenderer interface. One
can change the cell rendering behavior by calling a set
of methods on the DefaultTreeCellRenderer object prior
to using that object as an argument (Figure 1(B)).

2) Alternatively, one can create a new class to implement

TABLE I
COMPARISON OF THIS WORK (FEMIR) WITH PRIOR RESEARCH ON FRAMEWORK EXTENSION POINTS (Y: WELL-ADDRESSED, P: PARTIALLY ADDRESSED)

Supported Queries Pattern Extractor [1] FrUit [2] SpotWeb [3] Core [4] FEMIR
Summary of all extension points for a framework class P P Y - Y
Summary of frequent usage patterns of an extension point - - - - Y
Examples that illustrate how extension points are used - - - - Y
Extension points that are often used together - - - - Y
Framework methods designed to be overridden Y Y Y Y Y
Framework methods that are often overridden together - - - Y Y
Super-implementations that should be called by overriding methods - - Y Y
Framework methods that should be called by overriding methods - P - Y Y

the TreeCellRenderer interface and override the getTree-
CellRenderComponent method (Figure 1(C)).

3) Or one can subclass DefaultTreeCellRenderer and pass it
as the argument for setCellRenderer (Figure 1(D)).

By studying existing projects a developer can discover many
examples of how an extension point is used, however this can
be quite time consuming. To address this, we propose to mine
large code repositories and automatically locate examples of
framework extension point use. We also propose a taxonomy
of extension patterns to categorize the located usage examples.
Furthermore, to utilize these mined examples, we develop a
two-step recommendation system. A developer first selects an
extension point related to the framework object that they are
working with. Once selected, the recommender then shows
code examples of the relevant extension patterns for perusal.

We evaluate the efficacy of our two-step recommendation
system using five different frameworks and 1,267 projects
collected from GitHub, Our evaluation of the recommender
uses the standard ten-fold cross validation. The precision for
recommending extension patterns ranges from 78% to 90%,
and the recall ranges from 56% to 79% for the top-5 recom-
mendations. Our evaluation indicates that our proposed tech-
nique is promising in supporting the use of extension points.
Our approach is implemented as an Eclipse plugin called
FEMIR (Framework Extension Miner and Recommender).
Thus, our paper makes the following contributions:

• A taxonomy of framework extension patterns,
• A technique that combines syntactic analysis and graph-

based mining algorithms to recommend framework ex-
tension points and their usage patterns,

• An evaluation of our proposed technique in terms of
precision and recall, and

• A set of statistics on framework extension points.

The rest of the paper is organized as follows. Section II
presents related work. Section III defines a taxonomy of exten-
sion patterns. Section IV presents our approach for mining and
recommending extension patterns. Section V evaluates our ap-
proach, including its accuracy, a qualitative study of the quality
of the recommended patterns, and statistics that characterize
framework extensions. We discuss several questions related to
our study in Section VI, and threats to validity in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

The most relevant work to our study is XFinder by Dagenais
and Ossher [5]. XFinder is a tool that requires developers to
create guides as a sequence of steps for extending a frame-
work. Given a code base, a guide, and a framework, XFinder
can locate examples that implement each step of the guide.
Although they did not focus on finding examples of different
ways of using an extension point, their technique can do so
only if the developer manually creates a guide first. However,
our technique can automatically find extension points, catego-
rize their usage patterns, and locate code examples. Bruch et al.
proposed a technique that mines four sub-classing directives of
frameworks [4]. These directives are pieces of documentation
that describe the methods of a framework class that need to
be overridden, super and framework methods that should be
called inside an overriding method, and typical co-overridden
methods of a framework class. Our technique captures not only
sub-classing directive information but also how they can be
used with other parts of the code. Michail [6] developed a tech-
nique, called CodeWeb, that captures reuse relationships be-
tween a software library and user applications. The technique
was improved by including inheritance hierarchy in the reuse
relationships and by using generalized association rules [7].
Bruch et al. [2] developed a technique, called FRUIT, that
mines Java bytecodes to create framework usage scenarios on
five class properties (extends, implements, overrides, calls and
instantiates). Patterns are identified by applying an association
rule mining technique on those scenarios. However, none of
the above techniques focus on finding framework extension
points or different ways of interacting with an extension point.
Thummalapenta and Xie [3], [8] developed a technique, called
SpotWeb, that determines both frequently (hotspots) and rarely
(coldspots) used framework classes and methods by leveraging
code search engines. While SpotWeb can provide an overview
of framework usage, it does not find extension point usage
patterns and their examples. There are also a number of
other studies that aim to improve framework reuse. These
include the work on documenting framework patterns [9],
developing concept implementation template [10], creating
cookbooks containing feature recipes [11], and documenting
proven solutions to the frequently appearing challenges in
understanding frameworks [12]. However, the objectives of
these studies are different than ours.

Previous works on mining API usage patterns are related

2 of 11

to our study because we also apply graph mining technique
to locate framework extension patterns. A number of tech-
niques have been proposed in the literature for mining API
usage patterns. For example, Acharya et al. [13] proposed
a technique that mines API usage patterns as partial orders,
by leveraging static traces of source code. Zhong et al. [14]
proposed an API usage pattern mining framework, called
MAPO. The technique applies a clustering technique to group
related API calls, generates method call sequences for each
cluster and then applies a sequential pattern mining technique
to discover frequent patterns from those sequences. Nguyen
et al. [15] proposed GrouMiner, a graph-based approach that
can mine frequent usage patterns involving multiple objects
from source code. Wang et al. [16] proposed a technique that
uses a combination of closed frequent pattern mining approach
and two-steps clustering to find succinct and high coverage
API usage patterns. The patterns the above techniques mine
are typically located in one method, whereas our technique
focus on finding different patterns of using extension points
that often span across different classes, methods, and files.

Code search techniques are related to our study in that they
also focus on finding code examples. A number of techniques
have been proposed in the literature. These include but not lim-
ited to Strathcona [17], PARSEWeb [18], XSnippet [19], and
the internet-scale code search engine proposed by Keivanloo et
al. [20]. However, they are not designed to locate framework
extension examples because they typically find code examples
in a single method. There are also code search techniques
that can find examples from a task description [21] [22] [23].
However, none of these techniques can discover framework
extension points and their usage patterns.

III. TAXONOMY OF EXTENSION PATTERNS

Extension patterns are common ways of using an extension
point. To help manage extension patterns, we categorize them
into four broad categories as follows.

A. Simple

A simple extension pattern passes an argument object of a
framework class to an extension point, without any further
customization on the object. This pattern does not require
extending a class or implementing a framework interface. Fig-
ure 1(A) shows an example of the simple extension pattern for
the Dimension extension point, which is the formal parameter
of the setSize method of the JFrame class. Notice that if
there exist multiple framework classes that can be used as
argument types, multiple simple patterns may exist for the
same extension point.

B. Customize

Developers often need to call a set of methods on the
argument object of a framework class to customize its be-
havior. Such an extension pattern belongs to the customize
category. As an example, Figure 1(B) shows such a pattern
for the TreeCellRenderer extension point, where four methods
are called on the DefaultTreeCellRenderer object before it is

passed to setCellRenderer. Notice that if there exist multiple
framework classes that can be used as argument types, multiple
customize patterns may exist for the same extension point.

C. Extend

In an extend pattern, a new class is created to customize an
extension point by extending a framework class. Optionally,
additional method calls may be made on the argument object.
Figure 1(D) shows an example of this pattern for the Tree-
CellRenderer extension point. In this example, a new tree cell
renderer is created by extending the existing DefaultTreeCell-
Renderer class. Notice that if there exist multiple framework
classes that can be used as argument types, multiple extend
patterns may be found for the same extension point.

D. Implement

An implement extension pattern occurs when the extension
point is a framework interface. To customize the extension
point, a client class is created by implementing the interface.
Its object is then used as argument. Optionally, additional
method calls may be made on the argument object. As an ex-
ample, consider the TreeCellRenderer interface in Figure 1(C).
To customize the cell rendering behavior of a JTree, a new
class implements the getTreeCellRendererComponent method
of the TreeCellRenderer interface. An object of the new class
is then passed to the setCellRenderer method of the JTree
class.

IV. TECHNICAL DESCRIPTION

Our approach for mining and recommending examples of
framework extensions consists of two components, a graph
miner and a recommender, whose working processes are
summarized in Figures 2 and 3, respectively. The graph miner
is responsible for mining and organizing the usage patterns
for a framework extension point. Upon a developer’s request
for help on a selected extension point from a class, the
recommender displays a set of code examples to illustrate all
of its relevant extension patterns.

A. Miner

In this section, we briefly describe the seven components
shown in Figure 2 of our graph miner.

1) Framework Information Collector: This component ac-
cepts a framework jar file as the input and collects information
on framework classes, interfaces, and methods. For each class
or interface, we collect its name, super classes, implemented
interfaces, and the list of methods. For each method, we collect
its name, return type, and types of parameters.

2) Code Downloader: This component collects open source
software projects hosted on GitHub1 that contain framework
usage examples. GitHub hosts a large number of open source
Java projects. It also provides APIs to search for code ex-
amples. We search repositories using the import statements
in Java source files. For example, to identify repositories that
use the Swing API, we use the following query: import AND

1https://github.com/

3 of 11

Fig. 2. Working process of the graph miner of FEMIR

Fig. 3. Overview of the extension patterns recommender of FEMIR

javax AND swing. After collecting repository information, the
technique downloads source code examples.

3) Code Analyzer: The code analyzer performs static anal-
ysis of source code to identify framework extension points
and enable the construction of framework extension graphs.
It identifies type declarations (classes or interfaces) that are
created from framework types, determining their super classes,
implemented interfaces and overridden methods. It also iden-
tifies those method calls where a receiver is a framework type
or a sub-type, and resolves type bindings of both receivers and
arguments. The Eclipse JDT parser is used for parsing and we
use partial program analysis to resolve type bindings [24].

4) Framework Extension Graph Generator: At the core
of each framework extension graph is a method call that
represents a use of a framework extension point. To be
counted, the method call must have at least one parameter that
is related to a framework type. A framework extension graph
thus consists of one or more of the following node types:

• Receiver type: A node representing the receiver type of
a method call or the class in the case of a constructor
call.

• Method call: A node representing a method or construc-
tor call.

• Parameter type: A node representing the type of a
parameter that is either a class or an interface.

• Argument type: A node representing the declared type
of a method call argument.

• Other receiver method calls: All other framework
method calls on the receiver variable, including the con-
struction call that creates the variable.

• Other argument method calls: All other framework
method calls on the argument variable.

If the receiver or the argument of a call is of a client
type that extends a framework type, we collect information on
the extended classes, implemented interfaces and overridden
methods. Thus, a framework extension graph can also contain
the following kinds of nodes:

JTree

setShowRootHandles

method_call

new JTree

method_call

setCellRenderer

method_call

TreeCellRenderer

parameter

CustomTreeCellRenderer

argument

getTreeCellRendererComponent

override

JLabel

extend

TreeCellRenderer

implements

setText

framework_method_call

setBackGround

framework_method_call

setForeGround

framework_method_call

setFont

framework_method_call

Fig. 4. Framework extension graph for the example in Fig. 1(C))

• Extended class: A node representing the parent class in
the inheritance hierarchy.

• Implemented interface: A node representing an imple-
mented interface.

• Overriding method: A node representing a method that
overrides a framework method. We collect the method
name, return type, parameter types, and the type that
declare the method.

• Super method call: The super method called by an
overriding method.

• Framework method calls: A set of framework methods
that are called by an overriding method.

The extension graph shown in Figure 4 illustrates the
various types of nodes introduced above.

5) Graph Indexer: To enable future retrieval, the extension
graphs are indexed by the respective framework-related types
of the receiver, the formal parameter, and the argument.

6) Graph Miner: Given an extension point for a framework
class, the goal for the graph miner is to identify the frequent
patterns for extending the framework class by generating and
counting subgraphs. Given a set of n graphs (also known as
base graphs) that belong to the extension point, the miner
iteratively and incrementally generates all of their subgraphs
as follows. In the first step, it generates all one-node graphs
for each base graph. In each subsequent step, the generated
subgraphs are counted by comparing their canonical forms (see
below). The top-k frequent subgraphs are kept as the starting
point for the next step. In the next step, these top-k subgraphs
are grown by adding an adjacent node from the base graph.
As a result, a new set of subgraphs are generated. The process
continues until all nodes of the base graphs are exhausted.

The miner categorizes the graph patterns generated above
into the extension pattern categories as defined in Section III.
For example, consider the extension patterns for the TreeCell-
Renderer extension point. If a candidate pattern contains an
argument node that is created by extending DefaultTreeCell-

4 of 11

JTree
setShowRootHandles

new JTree
setCellRenderer
TreeCellRenderer

Client
getTreeCellRendererComponent

JLabel
TreeCellRenderer

setText
setBackGround
setForeGround

setFont

21, 35, 40
-
-

67
55

71, 77, 99
30, 45, 87, 201

-
-
-
-
-
-

3
-
-
1
1
3
4
-
-
-
-
-
-

Node Label Neighbor
Node Index

Out
Degree

13 :12 :21 -0 :30 -0 :34 -4 - ins ide_ca l l -30 - ins ide_ca l l -45 -
inside_call-87-inside_call-201:35-0:40-1-parameter-67:45-0:55-3-
o v e r r i d e - 3 4 - i m p l e m e n t - 7 7 - e x t e n d - 9 9 : 6 7 - 1 -
argument-55:77-0:87-0:99-0:101-3-call-21-call-35-call-40:201-0

total
nodes

total
Edges

node
Index

out
degree

bold characters show neighbors of
getTreeCellRendererComponent

Node
index
101
21
35
40
67
55
34
99
77
201
87
45
30

Fig. 5. Canonical form of the graph shown in Fig. 4. Each node is represented
by an index, an out degree and a list of neighbor nodes, separated by hyphens.
Each neighbor node is represented by an edge label (e.g., inside call) and its
index. Nodes are sorted by index and separated by colons.

Renderer, we assign it to the extend category. In contrast, if
the argument is an object of the framework class Default-
TreeCellrenderer with a set of additional methods called on
it, we assign the graph in the customize category. Notice
that due to the existence of nodes such as argument and
receiver calls, more than one pattern may be generated for each
extension pattern category. For each category, we pick the top-
n candidate graph patterns with the highest frequencies. We
call them mined graph patterns.

However, since the mined graph patterns are subgraphs
generated from the base graphs, they may not be ideal for
representing a pattern category because they may miss some
essential nodes in the base graphs. Thus, the miner further
improves a mined graph pattern p as follows. It first determines
the support of those nodes that are present in base graphs that
contain p but not in p itself. The support of such a node is
defined as the ratio of the number of base graphs that contain
the node over all the base graphs. If the support for a node
exceeds a predefined threshold value δ, it is added to the graph
pattern. During our experiment, we find that 0.30 is a good
value to work with.

To represent and compare graphs, the graph miner uses
an approximated canonical form. To answer the question we
need to determine whether two graphs are isomorphic to each
other or not. Although there are practical algorithms for testing
graph isomorphism, they are computationally expensive [25].
As an alternative, we use their canonical forms [26], because
the canonical forms of two isomorphic graphs should be
identical too. Unfortunately, determining the canonical form
of a graph is also computationally expensive [15]. Therefore,

we approximate the canonical form by using graph invariants,
which are structural properties of a graph. Specifically, we
create the canonical form of a graph by concatenating the
following graph invariants into a string:

1) The total number of nodes in the graph
2) The total number of edges in the graph
3) The list of nodes ordered by index
4) Each node is represented by an index, out degree, and a

list of neighbors ordered by index
A node index is calculated for each graph node by hashing
a string concatenating its out degree, name, and node type.
Figure 5 shows an example on how the canonical form is
calculated for the framework extension graph of Figure 4.
Lastly, to enable comparison, all client classes derived from
a framework type (such as the CustomTreeCellRenderer in
Figure 4) are represented using the same label client.

An analysis of the computational complexity follows. To
mine m base graphs each containing n nodes, the graph miner
would need to generate a total of O(m∗2n) subgraphs. While
the value of m can be very large for a large repository, due to
the practice of writing shorter methods, on average, the value
of n is not. To control the number of generated subgraphs,
we limit the maximum size of the candidate graph patterns to
20. Furthermore, each step of the graph mining process passes
on only the top k frequent candidate patterns to the next step.
In our experiment, we choose k = 500 because we believe
that practically no extension point would have more than 500
interesting patterns.

B. Recommender

FEMIR recommends the most likely patterns for each
extension point that a developer asks for help. To learn
how to extend the functionality of a framework class, the
developer requests the help from FEMIR by typing a dot after
a variable of the class. FEMIR first shows the developer the
list of extension points that are applicable to the class. Once
the developer selects an extension point, FEMIR then shows
multiple patterns for each of its extension categories.

Specifically, FEMIR first retrieves the subset of extension
graphs that belong to the extension point from the set of
all framework extension graphs that are built by the miner
previously. To do so, it utilizes the names of the framework
calss and the selected extension point as indices. FEMIR
then utilizes the graph miner described above to generate
and group the graph patterns by extension pattern categories.
FEMIR sorts the patterns belonging to each category based
on their usage frequency in the training data. Finally, FEMIR
recommends the top-n patterns for each category for the devel-
oper’s perusal. Once the developer selects a recommmended
pattern, FEMIR shows the actual code examples that contain
the pattern.

V. EVALUATION

In this section, we first evaluate the performance of
FEMIR in recommending code examples. To further illustrate

5 of 11

TABLE II
SUMMARY OF FRAMEWORK EXTENSION DATASET USED IN THIS STUDY

Framework Classes Methods Projects Files LOC
Swing 466 10,251 263 107,380 9.94 M
JFace 524 7880 300 151,523 11.20 M
JUnit 121 944 242 123,220 10.50 M
JGraphT 201 1493 295 82, 621 9.50 M
JUNG 342 3306 167 76,376 8.80 M

FEMIR’s capability qualitatively, we also present a set of ex-
tension patterns that are recommended by FEMIR. Lastly, we
present a set of statistics to characterize framework extensions.

We choose five different open source frameworks for our
evaluation: Swing, JFace, JUnit, JUNG, and JGraphT. These
frameworks are widely used for application development. They
are also used in prior research [3]. Table II summarizes the
five frameworks used in this study, including the numbers of
projects and source files analyzed. FEMIR is realized as an
Eclipse plug-in. All experiments are conducted on a machine
with INTEL Core i7 CPU (2.93 GHz), 16 GB RAM.

A. Accuracy of FEMIR recommendation

This section presents an experimental study to understand
the accuracy of our proposed technique FEMIR. To evaluate
FEMIR, we assume a scenario where a developer decides to
extend the functionality of a framework class, but does not
know how to do that. She requests the help from FEMIR after
declaring a variable of that framework class. This is done by
typing a dot(.) after the variable name. FEMIR first shows the
names of a list of extension points that the developer could use
to extend the functionality of the framework class. After she
selects an extension point, FEMIR shows the different patterns
of using it. Given an extension point, we thus evaluate the
effectiveness of the technique in recommending a framework
extension graph that matches with the actual usage of the
extension point.

1) Evaluation procedure and metrics: We develop an auto-
matic evaluation system that analyzes the source code files and
collects framework extension graphs from the subject systems
for each framework. Thus, for each framework variable v, we
know the fully qualified type name of the variable (tv), the
extension points used (e1, e2, e3, ..., en), and the framework
extension graphs (g1, g2, g3,, gn) that illustrate how those
extension points are used in the code.

Each extension is considered as a data point in our evalua-
tion. We apply the popular ten-fold cross validation to measure
the performance of FEMIR. Specifically, we divide the data set
into ten folds, each containing an equal number of extensions.
Next, for each fold, we use code examples from the nine other
folds to train FEMIR for recommendation. The remaining fold
is used to test the performance of the technique. For each test
data point, FEMIR recommends the top-n extension graphs for
each extension category to show the different ways of using
the extension point.

Precision and recall are calculated as follows. Let O denotes
the original graph under testing and S is the graph suggested by

FEMIR. Because S can be useful even if it is not identical to O,
we do not simply determine whether S and O are identical or
not. Instead, we determine the common nodes shared between
these two graphs. We use precision, recall and F-measure
metrics to measure the performance, which are defined as
follows. If a node in O occurs in S, we consider it a correctly
recommended node (increasing precision). On the contrary, if
a node in O does not occur in S, we consider it a missing node
(lowering recall).

Precision =
total correctly recommended nodes

total recommended nodes
(1)

Recall =
total correctly recommended nodes

total recommendation needed nodes
(2)

F −measure = 2 .
precision . recall

precision+ recall
(3)

To further illustrate the calculation of precision and recall,
consider the example depicted in Figure 1(c), where a new
class implements the TreeCellRenderer interface. Suppose this
is what a developer eventually wants to create but does not
know how initially. So the developer requests FEMIR to help.
FEMIR then suggests the list of extension points of JTree, such
as TreeCellRenderer, TreeNode, and TreeModel. Suppose that
the developer selects the TreeCellRenderer extension point.
In response, FEMIR recommends the top-n graph patterns
from each category, for the developer’s perusal. To calculate
precision and recall, FEMIR compares the test case with the
top-n graphs from the same category and report the precision
and recall from the graph that yield the best F-measure.
Figure 6 shows the best graph recommended by FEMIR, where
missing nodes are highlighted in red, and incorrect nodes are
highlighted using blue. Thus, the precision and recall for this
recommendation are 10/12 and 10/13, respectively.

We refer to the strategy described above as the local strategy
because it recommends the top-n patterns from within a
category, which is denoted as FEMIR-Local in Table III. An
opposite strategy is to recommend the global top-n patterns
regardless of their categories. We denote the global strategy
as FEMIR-Global in Table III.

2) Alternative strategies for maximizing accuracy: Recall
that when recommending framework extension graphs (Sec-
tion IV-A6), FEMIR first mines the most frequent graph pat-
terns for each extension pattern category. To improve accuracy,
it then applies a greedy strategy to add to each graph pattern
more nodes that are deemed important but missed during the
mining process. To further explore other options, we compare
the greedy strategy with an alternative that is called the
diversity strategy.

The diversity strategy works as follows. After determining
the top-n graph patterns of an extension pattern category, we
determine all the base graphs in the training data that contain
the patterns. Among these base graphs, we recommend the
ones that contain the largest number of different node types.
We refer to this strategy as the diversity strategy, and denote
it as FEMIR-D in Table III.

6 of 11

setSelected

getSelectionModel

setShowRootHandles

setForeGround

setBackGround

setCellRenderer TreeCellRenderer parameter Clientargument

getTreeCellRendererComponent
override

JLabelextend

TreeCellRenderer

implements

framework_method_call

setText

framework_method_call

setFont

framework_method_call

JTree

method_call

method_call

new JTree

method_call

Fig. 6. Extension pattern recommended for Figure 1(C), where matching nodes are shown in black, missing nodes in red, and incorrect nodes in blue.

TABLE III
EVALUATION RESULTS OF RECOMMENDING FRAMEWORK EXTENSION GRAPHS (RMC: RECEIVER METHOD CALL, AMC: ARGUMENT METHOD CALL, E:

CLASS EXTENSION, I: INTERFACE IMPLEMENTATION, FMC: FRAMEWORK METHOD CALL, O: OVERRIDDEN METHOD, OTHER: OTHER NODE TYPES)

Framework Technique RMC
AMC

E
I

O
FMC Other Precision Recall F-Measure

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Swing
FEMIR-Global

30% 6% 14% 50%
0.89 0.87 0.85 0.66 0.76 0.79 0.76 0.81 0.82

FEMIR-Local 0.89 0.89 0.89 0.71 0.72 0.73 0.79 0.79 0.80
FEMIR-D 0.20 0.41 0.42 0.31 0.67 0.73 0.24 0.51 0.53

JFace
FEMIR-Global

12% 6% 26% 56%
0.76 0.78 0.78 0.51 0.61 0.64 0.61 0.68 0.70

FEMIR-Local 0.81 0.82 0.82 0.44 0.48 0.49 0.57 0.60 0.61
FEMIR-D 0.25 0.34 0.43 0.37 0.56 0.63 0.30 0.42 0.51

JUnit
FEMIR-Global

17% 5% 12% 66%
0.90 0.90 0.90 0.60 0.67 0.69 0.72 0.77 0.78

FEMIR-Local 0.89 0.92 0.92 0.61 0.68 0.70 0.72 0.78 0.80
FEMIR-D 0.64 0.70 0.70 0.61 0.70 0.71 0.63 0.70 0.71

JGraphT
FEMIR-Global

31% 7% 5% 57%
0.86 0.85 0.85 0.41 0.53 0.56 0.55 0.65 0.67

FEMIR-Local 0.86 0.87 0.87 0.42 0.52 0.55 0.57 0.65 0.67
FEMIR-D 0.72 0.75 0.76 0.40 0.61 0.64 0.52 0.67 0.70

JUNG
FEMIR-Global

35% 6% 5% 54%
0.87 0.86 0.86 0.59 0.67 0.71 0.70 0.76 0.78

FEMIR-Local 0.88 0.88 0.88 0.61 0.67 0.70 0.71 0.76 0.78
FEMIR-D 0.56 0.70 0.71 0.51 0.67 0.70 0.56 0.68 0.70

3) Evaluation results: Table III shows the precision, recall,
and F-measure values for recommending target framework
extension graphs. Furthermore, columns three to six show the
percentages of different kinds of nodes in the test cases. The
largest number of nodes are of other type. Together RMC
(receiver method calls) and AMC (argument method calls)
represent the second largest group of nodes. Although the
percentages of E, I, O and FMC nodes are much smaller in
number, they would be the most difficult to use because of the
inheritance structure and limited usage examples.

In general, FEMIR-Global performs well in all these test
cases, with precision ranging from 78% to 90% and recall
56% to 79% for the top-5 recommendations. FEMIR-Local
performs close to FEMIR-Global. While the precision of
FEMIR-Local is slightly better, ranging from 82% to 92%, the
recall ranges between 49% to 73% for the top-5 recommen-
dations, which are slightly lower than FEMIR-Global. More
investigation will be needed to explain the difference between
FEMIR-Local and FEMIR-Global.

The result of FEMIR-D is not better than FEMIR-Global
either. In fact, the precision and recall values are lower than
FEMIR-Global in all cases except for JGraphT, where we
observe that FEMIR-D has slightly better F-measure than
FEMIR-Global.

B. Examples of framework extension patterns
In this section, we report a qualitative evaluation of the

quality of the patterns recommended by FEMIR. We consult
tutorials (both official and community-based) to find a set of
relevant patterns. Our goal is to check whether FEMIR is able
to identify these patterns by mining code bases. We focus on
Java Swing and JFace due to our familiarity with them. 2 3 4.

1) TableRowSorter: Tables in Java Swing support sorting
and filtering capability. To do so, it is required to pass an in-
stance of TableRowSorter to the setRowSorter() method. How-
ever, to gain more control, one can override TableRowSorter
or its parent class DefaultRowSorter. Figure 7(A) depicts an
example pattern mined by FEMIR for using TableRowSorter.
FEMIR is able to mine patterns for controlling table sorting in
all three different ways. Furthermore, a developer can provide
a filter object by calling setRowFilter() method on the sorter
object to control which rows will be displayed. Our mined
pattern is able to collect that information too. All of these
indicate that FEMIR is able to show different ways of using
an extension point, providing the developer the opportunity to
select the one that best matches with her goal.

2https://wiki.eclipse.org/Eclipse Corner
3http://www.javaworld.com/
4https://docs.oracle.com/javase/tutorial/uiswing/

7 of 11

https://wiki.eclipse.org/Eclipse_Corner
http://www.javaworld.com/
https://docs.oracle.com/javase/tutorial/uiswing/

JTable

new JTable

RowSortersetRowSorter TableRowSorter
setRowFilter

setSelectionModel

JLabel

new JLabel

setIcon ImageIcon

setIconTextGap

Icon new ImageIcon

TableViewer

new TableViewer

IBaseLabelProvidersetLabelProvider MyLabelProvider

LabelProvider
getImage

isLabelProperty

getTextsetContentProvider

TableViewer

new TableViewer

IContentProvidersetContentProvider MyContentProvider
updateElement

inputChanged

dispose

setLabelProvider ILazyContentProvider

setUseHashLookup

new TableRowSorter
A

B

C

D

Fig. 7. Example framework extension patterns mined by FEMIR: A customize extension pattern for the RowSorter extension point (A), a simple pattern for
Icon (B), and two extend extension patterns for IBaseLabelProvider (C) and IContentProvider (D), respectively.

2) Icon: Many swing components can be decorated with an
icon, a small fixed size picture. Figure 7(B) shows a pattern
where an icon is used jointly with a JLabel. The pattern
also shows that developers frequently call other methods to
set the properties of an icon. An alternative to this pattern
is to implement the Icon interface to create a custom icon
(not shown). FEMIR is able to mine both patterns. Again, this
example shows that FEMIR can collect all popular ways to
complete a task and allow the developer to select the option
that best fits her needs.

3) LabelProvider: A label provider allows viewers to cus-
tomize the display of labels. By default, a label provider
uses the element’s toString value to display text and null
for image. Figure 7(C) shows a pattern of using a custom
LabelProvider for the TreeViewer component. It also shows
that creating a label provider typically involves sub-classing
the LabelProvider class and overriding the following methods:
isLabelProperty, getImage, getText, and dispose. This matches
with information provided in the documentation of the JFace.
However, mined patterns often contain more important de-
tails than framework documentation. Thus, results mined by
FEMIR could complement documentation as a developer aid.

4) ContentProvider: Eclipse JFace viewers support a con-
tent provider that establishes the connection between the data
and the viewer. Figure 7(D) shows a pattern of creating a
content provider in order to customize a TableViewer. The
pattern also shows that when using the content provider, devel-
opers also set a label provider by calling the setLabelProvider
method, which is another extension point for the TableViewer
(Figure 7(C)). Thus, this example illustrates that multiple
extension points may be used together and a pattern of using

Simple
Customize
Extend
Implement

0

20

40

60

80

100

120

140

Swing JFace JGraphT JUnit Jung

Fig. 8. Distribution of extension patterns by categories

one also helps to discover others.

C. Distribution of extension patterns by categories

Further to the evaluation, we want to see the distribution
of extension points by categories using the five frameworks.
As shown in Figure 8, the distributions are similar across all
five frameworks. The most popular category of framework
extension patterns is the customize usage patterns, which by
definition require to call a set of methods on the method argu-
ment. The simple category, which does not require extending
a framework type, or using a variable with several call sites,
is the second most popular. Lastly, although the extend or

8 of 11

291

138

76

36
16 16 11 8 3 7

19

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 >10

Fr
eq

u
en

cy
 o

f
cl

as
se

s

Number of extension points
Fig. 9. Distribution of extension points across classes (Swing framework)

3.35

12.07

7.36

0.94 0.77

10.81

6.83

0.69
2.29

22.12

32.72

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 >10

P
er

ce
n

ta
ge

 o
f

to
ta

l f
re

q
u

en
cy

 o
f

u
sa

ge
s

Number of extension points

Fig. 10. Usage frequencies of Swing framework classes with different
numbers of extension points

implement categories appear to be minor, they require more
efforts to learn and use than the first two categories.

D. Distribution of extension points by classes

To understand how usable it is to show extension points
to developers, Figure 9 depicts the distribution of extension
points across framework classes for Java Swing. Only 4%
of the classes have 10 or more extension points. However,
this small fraction of framework classes appear to be more
frequently used. As shown in Figure 10, more than 54% of all

83.50 83.17

95.85 95.33

87.00

11.0 12.6

3.7 4.0
8.1

3.9 3.7
0.5 0.1

2.51.1 0.5 0.1 0.4 1.60.5 0.1 0 0.1 0.8

1
2
3
4
>4

D
iff

er
en

t n
um

be
r o

f e
xt

en
si

on
 p

oi
nt

s
th

at
 a

re
 u

se
d

to
ge

th
er

0

10

20

30

40

50

60

70

80

90

100

110

Percentage of usage examples
Swing JFace JUnit JGraphT Jung

Fig. 11. The percentage of cases where multiple different kinds of framework
extension points are used together

framework extension examples in Java Swing involve such a
class.

E. How often are multiple extension points used together?

A framework class may have multiple extension points.
To understand the association between framework extension
points, we are interested in knowing how often developers use
different extension points together. To answer this question, we
collect the data as follows. While parsing the source code, we
collect the set of methods that are called on the same receiver
object, including the constructor call that creates that object.
The framework extension graphs are then grouped together
based on the receiver objects. Each group of framework
extension graphs provides the set of extension points that are
used together. Figure 11 shows how frequently different kinds
of extension points are used together.

As shown in Figure 11, most commonly (more than 83% for
all frameworks), developers use only one framework extension
point. When they do use multiple extension points together,
they most often use two (from 3.66% to 8.12%). The percent-
ages decrease as the numbers of different extension points that
are used together increase. It seems that developers rarely use
five or more different extension points together.

VI. DISCUSSION

This section discusses a set of questions related to our study.

A. Detecting examples of extension patterns by categories

The goal of this section is to explore how well FEMIR
performs in detecting examples in each of the four extension
pattern categories. We use the same experiment settings (but
use only the Swing framework) and evaluation metrics as in
Section V. We first categorize the test cases of Java Swing
framework into four different extension pattern categories.
For test cases of each category, we run the experiment and
determine the precision, recall, and F-measure values. Table IV
shows the results of the experiment. The result shows that
FEMIR is indeed useful in recommending extension patterns
for all four categories. Interestingly, the simple extension
pattern category produces the lowest precision (0.80) and
recall (0.63), and the extend pattern category produces the
highest precision (0.92) and recall (0.91). More investigation
is needed to understand what causes the differences between
the categories, which remains as future work.

B. Quality of canonical forms

Two graphs with identical canonical forms are not nec-
essarily isomorphic. To test the accuracy of our canonical
form representation, we generate a graph database using one
hundred subject systems for the Java Swing framework. Then,
we enumerate through the list of canonical forms in the
graph database. We collect the set of graphs that share the
same canonical form. We then apply the graph isomorphism
detection algorithm by Mckay [27] to all pairs of graphs in the
set. The Mckay algorithm indeed identifies all pairs of graphs
as being isomorphic. This confirms that the canonical form
works correctly.

9 of 11

TABLE IV
EVALUATION RESULTS OF FEMIR FOR EACH EXTENSION PATTERN CATEGORY

Extension Pattern Category Precision Recall F-Measure
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Simple 0.83 0.82 0.80 0.55 0.62 0.63 0.66 0.71 0.71
Customize 0.92 0.89 0.87 0.73 0.76 0.87 0.82 0.82 0.87

Extend 0.91 0.92 0.92 0.77 0.90 0.91 0.83 0.91 0.91
Implement 0.88 0.85 0.85 0.57 0.65 0.65 0.69 0.73 0.74

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

P
er

fo
rm

an
ce

 m
et

ri
c

va
lu

es

Threshold value

F_measure

precision

recall

Fig. 12. Precision, recall, and F-measure at different threshold values

C. Effect of the threshold value

As explained in Section IV.A, our proposed technique uses a
threshold value to determine the missing nodes that need to be
added to the extension graph. To understand the effect of this
threshold value, we conduct a study using JFace and its subject
systems. It is the largest of the five different frameworks
we have considered in our study. We use the ten-fold cross
validation startegy and determine the precision, recall and F-
Measure values by changing the threshold value from 0 to 1,
at 0.10 interval. Figure 12 shows that the precision increases
at the expense of recall. To balance the effect, our goal is
to select a value that maximizes the F-measure value. The
value increases with the increase of the threshold value and
reaches to its highest value at 0.3 threshold. After that we
observe a gradual decrease of the F-measure value. Hence we
recommend to use 0.3 in our study.

It should be noted that we assume in this paper that the costs
of precision and recall errors are the same. If a precision error
and a recall error have a different cost (for example, it would
be reasonable to assume that a recall error is more costly than
a precision error because developers could easily filter out
irrelevant nodes), a different threshold will be chosen.

D. Runtime performance of FEMIR

To measure the runtime performance of the technique, we
measure the time required to make recommendations. Based
on executing a total of 16,268 queries, the average time
required to recommend framework extension graphs per query
was 0.92s for Java Swing. The major part of the recommen-
dation time is needed for mining framework extension graphs.
However, a significant fraction of the time can be saved if we
mine the graphs for all extension points beforehand and index
them to be used by the recommender later.

The time required to analyze the source code files and
generate framework extension graphs requires significantly

long time. For example, for JFace alone, it takes around
78 hours on a single node machine for FEMIR to generate
framework extension graphs from the source code files. The
time is mostly contributed by partial program analysis of the
source code. However, this is only a one time operation.

VII. THREATS TO VALIDITY

There are a couple of threats to the validity of this study.
First, we consider five frameworks to evaluate our proposed

technique. One can argue that the conclusions can be different
for other frameworks. However, we would like to point out
to the fact that the frameworks we consider in our study are
popular and a large number of Java systems are actively using
them. Given that our proposed technique does not directly
depend on a particular framework, we believe that the results
we obtain should largely carry over to other frameworks.

Second, in this study, we collect software systems that are
publicly hosted in GitHub. It is possible that software systems
hosted in a different project hosting site other than GitHub, or
close source projects can exhibit different framework extension
point usage patterns. To mitigate this effect, we consider those
projects in GitHub that are active in development, have a
long development history, and are large in size. Instead of
considering only a few Java projects, we also consider a large
number of projects in our study.

VIII. CONCLUSION

In this paper, we propose an approach to recommending
framework extensions by mining previously written source
code examples. We first define the concept of framework
extension points and propose a taxonomy of framework ex-
tension patterns. Based on these, we then develop a graph
mining approach for recommending the top-n frequent exten-
sion patterns. We hypothesize that showing these patterns and
code examples will usefully aid developers in learning how to
use the extension points. Using ten-fold cross validation, we
evaluate the accuracy of our recommender using a large set of
applications built on top of five popular frameworks. We show
that our proposed technique can help developers automatically
discover not only the framework extension points, but also
patterns of using those extension points, with reasonable
accuracy. We also collect several statistics to characterize the
framework extensions in our code base.

In the future, user studies will be needed to capture feedback
from developers in order to further improve our technique.
Furthermore, more investigation is also needed to better un-
derstand the inner working of our recommender.

10 of 11

REFERENCES

[1] J. Viljamaa, “Reverse engineering framework reuse interfaces,” SIG-
SOFT Softw. Eng. Notes, vol. 28, no. 5, pp. 217–226, 2003.

[2] M. Bruch, T. Schäfer, and M. Mezini, “FrUiT: IDE Support for Frame-
work Understanding,” in Proc. of the OOPSLA Workshop on Eclipse
Technology eXchange, 2006, pp. 55–59.

[3] S. Thummalapenta and T. Xie, “SpotWeb: Detecting Framework
Hotspots and Coldspots via Mining Open Source Code on the Web,”
in Proc. of the 23rd IEEE/ACM International Conference on Automated
Software Engineering, 2008, pp. 327–336.

[4] M. Bruch, M. Mezini, and M. Monperrus, “Mining subclassing directives
to improve framework reuse,” in Proc. of the 7th IEEE Working
Conference on Mining Software Repositories, 2010, pp. 141–150.

[5] B. Dagenais and H. Ossher, “Automatically Locating Framework Ex-
tension Examples,” in Proc. of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008, pp. 203–213.

[6] A. Michail, “Data Mining Library Reuse Patterns Using Generalized
Association Rules,” in Proc. of the 22nd International Conference on
Software Engineering, 2000, pp. 167–176.

[7] ——, “Data Mining Library Reuse Patterns in User-Selected Applica-
tions,” in Proc. of the 14th IEEE International Conference on Automated
Software Engineering, 1999, pp. 24–33.

[8] S. Thummalapenta and T. Xie, “SpotWeb: Detecting Framework
Hotspots via Mining Open Source Repositories on the Web,” in Proc.
of the 2008 International Working Conference on Mining Software
Repositories, 2008, pp. 109–112.

[9] R. E. Johnson, “Documenting Frameworks Using Patterns,” in Proc. on
Object-oriented Programming Systems, Languages, and Applications,
1992, pp. 63–76.

[10] A. Heydarnoori, K. Czarnecki, W. Binder, and T. T. Bartolomei,
“Two Studies of Framework-Usage Templates Extracted from Dynamic
Traces,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp.
1464–1487, 2012.

[11] R. F. Q. Lafetá, M. A. Maia, and D. Röthlisberger, “Framework
Instantiation Using Cookbooks Constructed with Static and Dynamic
Analysis,” in Proc. of the 2015 IEEE 23rd International Conference on
Program Comprehension, 2015, pp. 125–128.

[12] N. Flores and A. Aguiar, “Patterns for Understanding Frameworks,” in
Proc. of the 15th Conference on Pattern Languages of Programs, 2008,
pp. 1–11.

[13] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API Patterns As Partial
Orders from Source Code: From Usage Scenarios to Specifications,” in
Proc. of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, 2007, pp. 25–34.

[14] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining and
Recommending API Usage Patterns,” in Proc. of the 23rd European
Conference on Object-Oriented Programming, 2009, pp. 318–343.

[15] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based Mining of Multiple Object Usage Patterns,” in
Proc. of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, 2009.

[16] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining
succinct and high-coverage API usage patterns from source code,”
in Proc. of the 10th IEEE Working Conference on Mining Software
Repositories, 2013, pp. 319–328.

[17] R. Holmes and G. C. Murphy, “Using Structural Context to Recommend
Source Code Examples,” in Proc. of the 27th International Conference
on Software Engineering, 2005, pp. 117–125.

[18] S. Thummalapenta and T. Xie, “Parseweb: A Programmer Assistant
for Reusing Open Source Code on the Web,” in Proc. of the Twenty-
second IEEE/ACM International Conference on Automated Software
Engineering, 2007, pp. 204–213.

[19] N. Sahavechaphan and K. Claypool, “XSnippet: Mining For Sample
Code,” in Proc. of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications,
2006, pp. 413–430.

[20] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting Working Code Examples,”
in Proc. of the 36th International Conference on Software Engineering,
2014, pp. 664–675.

[21] J. Stylos and B. A. Myers, “Mica: A Web-Search Tool for Finding API
Components and Examples,” in Proc. of the IEEE Symposium on Visual
Languages and Human-Centric Computing, 2006, pp. 195–202.

[22] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proc. of the
33rd International Conference on Software Engineering, 2011, pp. 111–
120.

[23] S. Chatterjee, S. Juvekar, and K. Sen, “SNIFF: A Search Engine for Java
Using Free-Form Queries,” in Proc. of the 12th International Conference
on Fundamental Approaches to Software Engineering: Held As Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, 2009, pp. 385–400.

[24] B. Dagenais and L. Hendren, “Enabling static analysis for partial java
programs,” in Proc. of the 23rd ACM SIGPLAN Conference on Object-
oriented Programming Systems Languages and Applications, 2008, pp.
313–328.

[25] X. Yan and J. Han, “gspan: graph-based substructure pattern mining,”
in Proc. of the IEEE International Conference on Data Mining, 2002,
pp. 721–724.

[26] L. Babai and E. M. Luks, “Canonical labeling of graphs,” in Proc. of
the Fifteenth Annual ACM Symposium on Theory of Computing, 1983,
pp. 171–183.

[27] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” CoRR,
vol. abs/1301.1493, 2013.

11 of 11

	Introduction
	Related Work
	Taxonomy of Extension Patterns
	Simple
	Customize
	Extend
	Implement

	Technical Description
	Miner
	Framework Information Collector
	Code Downloader
	Code Analyzer
	Framework Extension Graph Generator
	Graph Indexer
	Graph Miner

	Recommender

	Evaluation
	Accuracy of FEMIR recommendation
	Evaluation procedure and metrics
	Alternative strategies for maximizing accuracy
	Evaluation results

	Examples of framework extension patterns
	TableRowSorter
	Icon
	LabelProvider
	ContentProvider

	Distribution of extension patterns by categories
	Distribution of extension points by classes
	How often are multiple extension points used together?

	Discussion
	Detecting examples of extension patterns by categories
	Quality of canonical forms
	Effect of the threshold value
	Runtime performance of FEMIR

	Threats to Validity
	Conclusion
	References

