
Exploring API Method Parameter Recommendations
Muhammad Asaduzzaman, Samiul Monir, Chanchal K. Roy and Kevin A. Schneider

Department of Computer Science
University of Saskatchewan, Saskatoon, Canada

Email:{md.asad, samiul.monir, chanchal.roy, kevin.schneider}@usask.ca

Abstract—A number of techniques have been developed that
support method call completion. However, there has been little
research on the problem of method parameter completion. In this
paper, we first present a study that helps us to understand source
code localness to method parameters. Based on our observations,
we developed a recommendation technique, called Parc, that
leverages source code localness property to collect parameter
usage context. Parc uses previous code examples together with
contextual and static type analysis to recommend method param-
eters. Evaluation of our technique against the only available state-
of-the-art tool using a number of subject systems and different
Java libraries shows that our approach has promising potential.
We also explore the parameter recommendation support in the
Eclipse Java Development Tool (JDT).

Index Terms—Automatic Code Completion, Method Parameter
Recommendations, Recommendations, API

I. INTRODUCTION

Developers use framework and library APIs to reuse code
during software development. This not only speeds up devel-
opment but also saves time and resources. However, studies
have shown that it is difficult to learn APIs due to various
factors, such as inadequate examples and documentation [27],
[29]. It is also difficult to remember APIs due to their
sheer volume. To alleviate these problems, modern integrated
development environments (IDEs) contain a code completion
feature. It has been found that code completion is one of the
top ten commands used by developers [26]. It speeds up the
process of writing code by reducing typos or other program-
ming errors, and frees the developer from remembering every
detail. For example, as a developer types a method call, a
code completion system typically uses autocomplete popups
to recommend a set of method names, and the developer can
then select the appropriate method call from the list. Although
a number of techniques have been developed, most focus on
the problem of suggesting method calls and leave the task
of completing method parameters to the developers. However,
determining the correct parameters to call a method is a non-
trivial task and requires more attention [3]. Unless otherwise
specified, in this paper we use the term parameter to refer to
the actual parameter.

Incorrect use of API method parameters can lead to software
bugs [19], [21] or can cause runtime exceptions. For example,
the valueOf method in the Java String class returns the string
representation of the parameter. The valueOf method has been
overloaded to accept different forms of parameters and the
overloaded method is chosen according to the static type of
the parameter. One of the overloaded methods takes an Object

as a parameter and the other takes a char array (char[]). The
first method contains a check for the null value but the other
one does not. The call String.valueOf(null) will execute the
second overloaded method and throw a null pointer exception
since type char[] is more specific than Object according to the
Java language specification. However, casting the parameter to
Object selects the first overloaded method. Since this method
has a check for null value, the method will not throw an
exception [24]. Although developers can identify and solve the
problem by searching online and reading documentation, the
effort is considerable. A parameter recommendation technique
can help avoid this extra effort by suggesting the required
casting operation.

There has been very little research on the problem of
automatic parameter completion; however, Zhang et al. [3]
have developed a parameter completion tool: Precise. Precise
mines previous code examples to collect parameter usage
patterns. Given a request for parameter completion, the tool
uses a K-nearest neighbour algorithm to recommend proposals
by matching the similarity of the current context with the past
parameter usage examples. Despite the contribution of Precise,
we see a gap between their work and what we can do regarding
parameter completion. In this paper, we follow on from their
work to further explore the problem and to improve support
for parameter completion.

Unlike the study by Zhang et al. [3], we start with a
manual investigation to understand how developers complete
method parameters. During our study we found that parameter
usages are locally specific. For example, before using an array
access expression as a method parameter, developers typically
instantiate the array close to that parameter position. When
a method invocation is used as a method parameter, other
method calls and language constructs that are related to that
method call typically are located close together. In this paper,
we conduct an exploratory study to understand parameter
usages and leverage the findings to support parameter comple-
tion. In particular, we answer the following research questions:

RQ1: Is source code locally specific to parameters ?
By studying the local context of parameter usage, we

hope to gain insights into building a more robust parameter
completion technique.

RQ2: How can we capture the localness property to recom-
mend method parameters?

We propose an example based code completion technique
that collects parameter usage context from past examples.
The technique only considers tokens close to the parameter

position. The usage context in our case consists any tokens
(except identifiers, literals, braces and access specifiers) within
the top four lines prior to the method call. When a developer
requests parameter code completion, the technique tries to
match the current usage context with that of the collected
examples. It then performs static type analysis to adapt the
best matched example parameter in the current development
context.

RQ3: Does the technique compare well with Precise and
JDT?

To the best of our knowledge, Precise is the only state-of-
the-art technique for recommending API method parameters.
We thus compare our technique with Precise using two large
subject systems. The results from the study suggest that the
technique has strong potential and can support more parameter
expression types than Precise. We also investigate parameter
recommendation support in Eclipse JDT. A large number of
method parameters are in the simple name expression category,
but Precise cannot recommend them. To compare with JDT we
focus our attention to parameters of the simple name category.
We ignore others because JDT has very limited or no support
for them. We show that the usage patterns of simple name
parameters are also locally specific and their localness can
be captured in a different way. Evaluation using parameters
from two different API libraries and with two different subject
systems shows the effectiveness of the new technique. The
modified technique has been integrated with our parameter
recommendation system.

Our contributions include:
1) A study that empirically validates that source code is

locally specific to method parameters.
2) A technique that leverages source code localness property,

static types and previous code examples to recommend
method parameters.

3) An evaluation of our proposed technique with existing
state-of-the-art tools using different subject systems and
with different API libraries.

The remainder of the paper is organized as follows. Sec-
tion II describes related work. Section III describes important
concepts related to the study. We introduce our proposed
technique in Section V and summarize the evaluation results
in Section VI. Section VI-B describes our technique for
recommending method parameters for simple name expression
types and compares the results with Eclipse JDT. We discuss
some important issues about our work in Section VII. Sec-
tion VIII discusses threats to the validity of our work. Finally,
Section IX concludes the paper.

II. RELATED WORK

The most relevant work to our study is that of Zhang
et al. [3]. They propose a technique, called Precise, that
mines existing code bases to generate a parameter usage
database. A parameter usage instance consists of four pieces
of information: (i) the signature of the formal parameter bound
to the actual parameter, (ii) the signature of the enclosing
method in which the parameter is used, (iii) the list of methods

that are called on the variable used in the actual parameter,
(iv) methods that are invoked on the base variable of the
method invocation using the actual parameter. Given a method
invocation and a parameter position, Precise identifies the
parameter usage context in the current position and then
looks for a match in the parameter usage database using
a K-NN algorithm. Precise has been evaluated using SWT
library method parameters and Eclipse. Our study differs from
theirs in a number of ways. First, Precise cannot recommend
parameters of the following expression types: simple name,
boolean, null literal, and class instance creation. Our proposed
technique can not only recommend parameters of all the above
four expression types, but also those that are supported by
Precise. Second, we use a different approach to construct
the parameter usage context compared to Precise that takes
advantage of source code localness to method parameters.
Simple tokenization is suffice to collect the usage context.
Finally, we also investigate the parameter recommendation
support of JDT, which was not explored in the previous study.

There are also a number of other code completion tech-
niques available in the literature. They either use previous code
examples or the static type system to recommend completion
proposals. However, they all focus on method call completion
instead of parameter completion. Bruch et al. [9] propose the
Best Matching Neighbours (BMN) completion system that
uses the k-nearest neighbour algorithm to recommend method
calls for a particular receiver object. Hou and Pletcher [1], [10]
develop a code completion technique that uses a combination
of sorting, filtering and grouping of APIs. Asaduzzaman et
al. [20] develop an example-based context sensitive code
completion technique that leverages locality sensitive hashing
and textual similarity measures to recommend method calls.
Robbes and Lanza [8] propose a set of algorithms that use
program history to recommend class and method names.

There are also a number of other techniques or tools that use
previous code examples, but their goals are different than ours.
Nguyen et al. [6], [7] use a graph-based algorithm to develop
a code completion technique. While their technique focuses
on automatic completion of API usage patterns, we focus on
completing method parameters. Thung et al. [23] develop a
technique that given a textual description of a feature request
recommends API method names for implementing a feature.
The technique leverages records of previous changes made to
software systems. Hill and Rideout [2] develop a technique to
support automatic completion of a method body by searching
similar code fragments or code clones in a code-base. Mooty
et al. [5] develop an Eclipse plugin, called Calcite, that helps
developers to instantiate an object of a class.

III. PRELIMINARIES

This section describes some important concepts related to
our study.

A. Parameter Completion Query

The term query indicates an incomplete method call without
any parameters (see Figure 1 for an example). The goal is to

TABLE I: Examples of parameter expression types (highlighted in bold) and their distribution in three different subject systems

Parameter Expression Types Example
Distribution of Parameters in Different

Expression Types
JEdit ArgoUML JHotDraw

Array Access button.add(actions [i]); 0.19 0.51 1.26
Array Creation pd.setListData(new Object[]{new LoadingPlaceholder()}); 0.14 - 0.06
Boolean Literal frame.setVisible(true); 5.53 7.36 4.26
Cast Expression progress.setMaximum((int)max)); 0.48 0.68 5.57
Character Literal list.addChar(‘A’); 0.43 - -
Class Instance Creation frame.setSize(new Dimension(100,100)); 11.66 11.44 7
Field Access g2d.setRenderingHints(painter.renderingHints); 0.07 - 0.33
Instanceof Expression field.setEditable(e.getItem() instanceof GlobVFSFileFilter); 0.02 0.06 -
Method Invocation menubar.add(Box.createGlue()); 16.91 16.32 12.06

Simple Name Dimension dim= new Dimension(100, 100);
frame.setSize (dim) ; 40.69 39.08 36.77

Qualified Name Container c = frame.getContentPane()
c.add(new JLabel(“Place”,BorderLayout.CENTRE); 8.79 9.96 17.42

Null Literal JOptionPane.showMessageDialog(null,
message,JOptionPane.ERROR MESSAGE); 0.69 1.22 1.69

Number Literal buffer.setSize(100); 8.09 5.85 7.46
Parenthesized Expression rectangle.setHeight((oldHeight*2)); 0.19 0.45 0.61
String Literal label.setText(“Location”); 3.52 1.92 4.67
This Expression clipboard.getContents(this); 1.84 4.30 0.68
Type Literal SwingUtilities.getAncestorOfClass(EditPane.class,ta); 0.71 0.80 0.48

10. public void addComponent(TextArea ta){

11. ta.setLineWrap(true) ;

12. ta.setWrapStyleWord(true);

13. JScrollPane scroll=new JScrollPane(ta);

14. this.add(_

15. }
Incomplete Method Call

Fig. 1: An example of a parameter completion query

complete the parameters in order to call the method. For each
query, we know the receiver type, the method name and the
set of tokens that appears prior calling the method, but we do
not know the actual parameter(s) to complete the method call.

B. Parameter Expression Types

An expression is a syntactic construction that can give
us a value. Developers use a number of expressions types
to complete method parameters. Table I shows the list of
parameter expression types with examples. More about these
expressions can be found in the JDT documentation [25].

C. Distribution Of Parameter Expressions

To determine the frequency of different parameter ex-
pression types we consider three different subject systems:
JEdit [14], ArgoUML [15] and JHotDraw [16]. For each
system we collect parameters from the API method calls of
Swing and AWT libraries. Table I shows the distribution of
parameters into different expression categories. Despite the
difference in subject systems and API libraries, our finding
is consistent with that of Zhang et al. [3]. The largest number
of parameters fall in the simple name category (more than
36% in all three systems). The majority of the remaining
parameters fall under the following three expression types:
method invocation, qualified name and class instance creation.
For JEdit, 8.79% of the parameters are of the qualified

expression type and the number reaches 17.42% for JHotDraw.
The method invocation expression type comes second for JEdit
and ArgoUML (around 16% for both systems) and 12.06% for
JHotDraw. The percentage of parameters for the class instance
creation expression type ranges from 7% to more than 11%.
Then come various literal expression types. In general, array
access, cast expression, simple name, qualified name, method
invocation, class instance creation, this expression and literal
expression types (number, boolean, null and string literals)
cover more than 98% of method parameters. Therefore, in
this study we focus our attention on these eleven parameter
expression types. We ignore others because they are difficult
to autocomplete due to the complexity of the parameter
expression types.

IV. RQ1: IS SOURCE CODE LOCALLY SPECIFIC TO
METHOD PARAMETERS?

We say source code is locally specific to method parameters
if tokens that appear in close proximity and prior to using
method parameters favor them. Then there should exist a
skewed probability distribution of those tokens when we group
them based on the receiver type, the method name and the
parameter position. To empirically determine this we follow
the procedure described by Tu et al [22] (we collect SWT
API method parameters of Eclipse system). The idea is to use
the entropy measure from information theory to determine the
probability distribution of those tokens using the following
equation: entropy = ∑

k
i=1−pi log(pi)

Here, pi is the probability of a token i that appears before a
specific method parameter over all examples of that parameter
position that is followed by token i. The more the entropy
measure is close to zero, the higher the distribution will be
skewed. On the contrary, the closer the value is to log2 k (k is
the number of examples of that parameter position), the more
the probability distribution of those tokens will be uniform.

0	

2	

4	

6	

8	

10	

12	

1	 51	 101	 151	 201	 251	 301	 351	 401	 451	 501	 551	 601	 651	 701	 751	 801	 851	 901	 951	 1001	 1051	 1101	

En
tr
op

y	
(o

n	
a	
sc
al
e	
of
	 lo
g2
)	

Individual	 Groups	

Observed	

Uniform	

Fig. 2: Mean entropy distribution for the top ten tokens when
we group code examples based on receiver type, method name
and parameter position.

For each method parameter we determine the top n tokens (in
this experiment we set the value of n to 10) before calling the
method and then group them based on the receiver type of
the method call, the method name and the parameter position.
For each group, we determine the entropy of each token using
the above equation and then report the mean entropy value.
Figure 2 shows the results along with the entropy measure
for uniform distribution. We can see from the figure that the
observed mean entropy values are way smaller than that of
uniform distributions. This confirms that we can use locally
specific tokens to recommend method parameters. It should be
noted that we did not consider the method name in the top ten
tokens because of its uniform probability distribution in each
group of examples.

V. RQ2: HOW CAN WE CAPTURE THE LOCALNESS
PROPERTY TO RECOMMEND METHOD PARAMETERS?

To answer the above question we describe our proposed
technique to recommend method parameters. Before dis-
cussing details of the technique we summarize challenges in
recommending method parameters. First, static type systems
cannot help much simply because there are a large number
of variables whose type matches with the expected type of
the parameter. There can also be a number of methods whose
return type matches with the expected type of the parameter.
Furthermore, the type of an actual parameter can be a subtype
of the formal parameter. Second, a parameter of a method
can take expressions of different categories (such as simple
name, method invocation, class instance creation etc.). Third,
some parameters are difficult to predict because of the high
degree of variability or complex structures in its parameter
usage examples which makes the recommendation challenging
(such as postfix, prefix and infix expression types). However,
they are only a few in number and we ignore them in this
study.

To support automatic completion of API method parameters,
we develop a technique that collects parameter usage instances
from previous code examples to form a database, and we call
this Parc. When a developer requests for a parameter comple-
tion, our technique determines the requested parameter usage
context and the candidate list. The list is then sorted using
the similarity between the context of the requested parameter
with that of parameters stored in the database. Finally, the
top few candidates are recommended as completion proposals
after removing duplicates. In the following section we describe
each step in detail.

A. Building the parameter usage database

To build the parameter usage database, we walk through
code examples to look for API method invocations. Then for
each method parameter we collect the following pieces of
information:

1) Method Name: The name of the method containing the
parameter.

2) Receiver Type: The fully qualified name of the receiver
type of that method.

3) Parameter Position: The position of the parameter in the
method parameter list.

4) Feature: Features capture the localness property of
method parameters. A feature consists of a set of tokens
that appears within the top k lines prior calling a method
with parameters and also located within the same method
that encloses that method with parameter. We only con-
sider any method names, any class or interface names and
any keywords because these tokens show the most skewed
probability distribution. After considering various values
of k we obtain the best performance of our technique
using k = 4.

5) Generic Representation: The generic string represen-
tation of a parameter. The identifiers appeared in pa-
rameter examples can have different names, but they
refer to the same parameter. The generic represen-
tation is used to identify duplicity in the parameter
recommendations. To generate the generic representa-
tion, we replace any simple name that appeared in
the parameter expression with its type qualified name.
For example, consider the following method invocation
where the parameter is a simple name: panel.add(button).
The generic representation would be javax.swing.jbutton.
Consider another case where the parameter is a
method invocation: tab.setText(button.getText()). The re-
ceiver type of the parameter method invocation here is
javax.swing.jbutton and the generic representation would
be: javax.swing.jbutton.getText

The above items represent a parameter usage instance as
shown in Figure 3. We use an indexing scheme where the
parameter usage instances are indexed based on the method
name, parameter position and receiver type. The usage context
of a parameter is stored by concatenating all of the terms where
any two consecutive terms are separated by a single space.

 1. JInternalFrame frame = new JInternalFrame();

 2. frame.setVisible(true);

 3. desktop.add(frame);

 4. Dimension d = new Dimension(100,100);

 5. frame.setSize(d);

Method Name: setSize

Method Receiver Type: javax.swing.JFrame

Parameter Position: 0

Feature: JInternalFrame new JInternalFrame

setVisible add Dimension new Dimension

Target Parameter

A Code Example

A Parameter Usage Instance

Fig. 3: An example of a parameter usage instance

B. Collect features from query

When a developer requests for a method parameter rec-
ommendation (in Eclipse this can be pressing ctrl + space
after writing the method name), Parc collects the same set of
information it collected while building the parameter usage
database, except generic representation of the parameter since
we do not yet know actual parameter. We refer to this
information as a query instance and the corresponding feature
as a query feature. We use the method name, receiver type and
parameter position value of the query instance as an index to
locate all previous parameter usage instances. We call this set
the mapping candidates.

C. Determine feature similarity

For each mapping candidate and the query pair, we apply
cosine similarity to determine their feature similarity and then
sort the mapping candidates based on the descending order of
the similarity value. If two mapping candidates have the same
feature similarity with the query, we use the frequency of the
mapping candidate to break the tie. Determining cosine simi-
larity with all mapping candidates can be very time consuming.
Therefore, we introduce an intermediate step. We use a form of
locality sensitive hashing to calculate usage context similarity
using similarity preserving hash values instead of calculating
textual similarity. Since the hashing technique converts a large
string into a much smaller bit sequence, the similarity can be
calculated very quickly.

We use the simhash algorithm [18] to generate 128 bit
binary hash values, also known as simhash values. The tech-
nique has been found effective in detecting duplicate web
pages [17]. The more similar two string are, the more smaller
would be the Hamming distance between their simhash values.
The Hamming distance between two binary values is equal to
the number of ones in their bitwise exclusive OR operation.
The smaller the Hamming distance is, the closer the two

simhash values are. Therefore, after determining the Hamming
distance we sort the parameter candidates in ascending order
of distance value and select the top 500 parameter candidates,
which we refer to as likely parameter candidates. We now
determine the cosine similarity of the query context with each
likely parameter candidate. We then sort the likely parameter
candidates in descending order of similarity value and use their
generic representation to remove any duplicates.

D. Static analysis and recommendation

At this point, we have a sorted list of parameters. Before
making any recommendation we need to validate whether
the parameter matches with the current context. For this
reason, we use the following set of rules to create parameter
recommendations:

1) If the parameter is a literal type, we directly use that for
the recommendation.

2) If the parameter is a method invocation expression or a
qualified name, we need to consider two different cases.
If the receiver is empty or a type variable, we use the
parameter without any change. However, if the receiver
is a simple name, we first find all variables that are type
compatible with the receiver variable and within the scope
of the query method call (see Section VI-B for detail
about how we generate this list of variables). We then
replace the receiver with the topmost variable and insert
the method invocation expression in the recommendation
list.

3) If the parameter is a simple name, we search the query
context to look for variables that are within the same
scope as the query method call and type compatible with
the formal parameter. This time we insert the top three
variables in the list of recommendations. We limit the
insertion of up to three variables because there can be
a large number of type compatible variables that reside
within the scope of query context and we found the best
result using that value.

After generating the recommendations, they are placed on
top of the JDT completion proposals to present to the users.
The number of recommendations generated by the Parc is
configurable by users.

VI. RQ3: DOES THE TECHNIQUE COMPARE WELL WITH
PRECISE AND JDT?

To answer the above question we evaluate Parc with exist-
ing parameter recommendation techniques (this includes both
Precise and Eclipse JDT) we use two different subject systems:
Eclipse 3.7.2 [12] and NetBeans [13]. Both systems are large
in size and have a long development history. Since our tech-
nique focuses on API method parameter completion, we use
two different API libraries. For the Eclipse system, we collect
all parameters of SWT library methods. For the NetBeans
system, we collect method parameters of Java Swing and AWT
libraries. Our selection of libraries is based on the fact that all
these libraries are frequently used by developers for developing

applications. Thus, automatic parameter completion support
for those API methods is more likely to help developers.

We apply the ten-fold cross validation technique to measure
the performance of each technique [11]. First, we divide the
entire data set into ten different folds. Next for each fold,
we use code examples from the nine other folds to train the
technique for parameter completion. The remaining fold is
used to test the technique. To make the result comparable with
Precise, the folds are generated based on classes. This means
that all the parameter usage instances occurring in a class are
either used together for training or for testing.

We provide parameter usage instances occurring in the train-
ing set to the parameter completion techniques for training.
During testing, for each API method parameter we ask a
code completion technique to generate completion proposals.
The actual parameter used in the test set is hidden from the
techniques, but the code appears prior to that parameter is
available to them. After generating the completion proposals,
we check whether the target parameter appears within the top
ten recommendations.

We use precision and recall to measure the performance
which are defined as follows:

Precision =
recommendations made∩ relevant

recommendations made
(1)

Recall =
recommendations made∩ relevant

recommendations requested
(2)

Here, recommendations made is the total number of time a
parameter completion technique recommends parameters. The
term relevant refers to the total number of time the actual
parameter is present in the top few recommendations. The term
recommendations requested denotes the number of parameters
in our test data.

A. Evaluation Results

This section presents results of our evaluation. We were
interested to see how Parc performs in predicting all eleven
parameter expression types. Table II shows precision and
recall values for two different subject systems and for eleven
different parameter expression types. For Eclipse, Parc has a
47.65% precision for the top position and a 72.06% precision
for the top ten positions. The recall value is also very high.
For the top ten positions Parc achieves more than a 70%
recall value. For the NetBeans system Parc shows consistent
performance. For the top ten positions precision is 72.06% and
recall is nearly 70%. However, Precise did not perform well
in this study. This is because Precise cannot detect parameters
of the following expression types: simple name, null literal,
boolean, and class instance creation. However, a large number
of method parameters are of simple name and class instance
creation expression types.

We only include Precise in this table to show that it
cannot detect a large number of method parameters but they
can be easily detected by Parc. Since JDT can recommend
method parameters of simple name and the highest number of

TABLE II: Evaluation results of parameter recommendation
techniques for all eleven parameter expression types Parc can
detect

Subject System Recom. Precision Recall
Precise Parc Precise Parc

Eclipse
Top-1 11.75 47.65 11.07 46.65
Top-3 15.26 65.05 14.38 63.68
Top-10 18.45 72.26 17.38 70.73

NetBeans
Top-1 16.67 46.46 13.78 44.86
Top-3 22.10 66.20 18.27 66.75
Top-10 25.46 72.06 21,04 69.57

parameters fall in that category, it could easily achieve higher
precision and recall value than Precise in this experiment. This
can hide the important fact that such parameters are easier to
detect and JDT cannot recommend any complex parameters
that are detected by Precise. While one can combine JDT with
Precise by appending completion proposals of JDT after the
recommendations from Precise, there are challenges in using
them together. It may be the case that the actual parameter
is a simple name but Precise recommends other parameter
expressions. Appending completion proposals after Precise
indicates that we will definitely miss the parameter in the top
positions. Thus, we exclude JDT from this experiment and
focus on comparing with Precise only.

To determine how Parc performs considering only those
parameter expression types that are supported by Precise,
we conduct the experiment again. This time we consider the
following parameter expression types: qualified names, method
names, string literals, number literals, this expressions, array
access and cast expressions. Table III shows the evaluation
results. For both systems, Parc achieves better results than
Precise. For the Eclipse system and for the top position,
Parc obtains 2% better precision value and 2.35% better
recall value. While for the top ten positions Parc achieves
53.49% precision value, Precise obtains 51.46%. Parc also
obtains slightly higher recall value than Precise. Although
the performance of Parc is slightly better than Precise, these
are the most difficult parameters to predict. Moreover, we
exclude parameters of class instance creation type from this
experiment that can be detected by Parc but not by either JDT
or Precise. For the NetBeans system, the relative improvements
become more significant. For example, for the top position
Parc achieves a 25.87% higher precision value and a 33.16%
higher recall value compared to Precise. Even for the top
ten positions Parc performs significantly better than Precise.
However, Parc provides more accurate recommendations and
shows consistent performance across different subject systems.
Table IV shows the accuracy of correctly predicted parameters
across different parameter expression types for the top ten
recommendations for this experiment.

B. Exploring Parameter Recommendations of Eclipse JDT

Despite the fact that a large number of method parameters
fall in the simple name category, Precise cannot recommend
them. However, the default code completion system of Eclipse
JDT can recommend those parameters. However, Eclipse JDT

TABLE III: Evaluation results of parameter recommendation
techniques using only those parameter expression types that
are supported by Precise

Subject Systems Recommen.
Precision

(%) Recall

Precise Parc Precise Parc

Eclipse
Top-1 32.77 34.77 30.69 33.04
Top-3 42.58 46.29 30.88 43.98
Top-10 51.46 53.49 48.19 48.48

NetBeans
Top-1 25.82 51.69 26.06 49.30
Top-3 34.23 70.99 34.55 67.71
Top-10 39.42 78.38 39.79 74.75

TABLE IV: Accuracy of correctly predicted parameters for
different expression types for the top ten recommendations

Subject Systems Parameter
Expression Test Cases Accuracy(%)

Precise Parc

Eclipse

Qualified Name 470 42.12 43.82
Method Invocation 405 47.16 46.67
String Literal 33 39.39 36.36
Number Literal 79 65.82 65.82
This Expression 36 55.56 55.56
Array Access 24 66.67 66.67
Cast Expression 1 100 100

NetBeans

Qualified Name 860 26.86 93.02
Method Invocation 490 29.59 54.28
String Literal 85 47.05 50.64
Number Literal 441 74.60 66.67
This Expression 69 79.71 79.71
Array Access 5 40.00 20.00
Cast Expression 11 9.09 9.09

provides very limited or no support for recommending pa-
rameters for other expression types. In this section, we first
summarize the parameter recommendation strategy of Eclipse
JDT and then conduct an experiment to evaluate the technique
with our proposed one for the simple name parameters only.

JDT collects local variables, parameters of the enclosing
method, class variables (also known as fields) and inherited
variables whose type match with the expected type of the
target method parameter. We refer to this set of variables as
the candidate set. Depending on the expected types of the
method parameters, JDT also adds different literals to the
candidate set. For example, if the expected type of the method
parameter is boolean, boolean literals true and false are added.
If the expected type is an object of a class, JDT adds null
literal to the candidate set. Integer literal 0 is added when the
expected parameter is a number. It then sorts the elements of
the candidate set using the following sequence of rules:

• local variables have higher priority than class variables
and class variables have higher priority than inherited
class variables.

• A longer case insensitive substring matches of the vari-
able name with that of the method formal parameter will
prevail.

• variables that have not been used have a higher priority
than those that have already been used. This rule tries
to avoid recommending the same variable to multiple
method parameters.

• The more closely a variable is declared to the method pa-

public VFSBrowser(View view, String path, int mode,
boolean multipleSelection, String position)
{

super(new BorderLayout());

listenerList = new EventListenerList();

this.mode = mode;
this.multipleSelection = multipleSelection;
this.view = view;
. . .

topBox = new Box(BoxLayout.Y_AXIS);
horizontalLayout = mode != BROWSER

|| DockableWindowManager.TOP.equals(position)
| | DockableWindowManager.BOTTOM.equals(position);

toolbarBox = new Box(horizontalLayout
? BoxLayout.X_AXIS
: BoxLayout.Y_AXIS);

topBox.add(toolbarBox)

toolbarBox is a field of the
VFSBrowser class

After initialization use
toolbarBox as an method

argument

Initialize the field variable

Fig. 4: When recommending a method parameter, Eclipse JDT
puts the local variables first. The field variables are positioned
after the local variables and method parameters. Thus, in this
case JDT will place the variable toolBarBox in the last position
of the completion popup. However, instead of the declaration
point, considering the initialization or most recent assignment
point prior to calling the target method can help us to place
the variable in the top position.

rameter position, the more its priority will be. Closeness
is calculated using its location in the source code.

TABLE V: The percentage of correctly predicted method
parameters for the simple name expression category

Subject Systems Category JDT (%) Parc (%) Relative
Improvent

Eclipse
Local 70 94.67 24.67

Parameter 90.22 87.45 -2.77
Field 62.78 66.55 3.97

NetBeans
Local 79.22 87.26 8.04

Parameter 91.54 88.29 -3.25
Field 24.33 29.93 5.60

We randomly select a number of examples where the
method parameter is a simple name and manually investigate
them. We notice that developers tend to declare a variable in
the same code block the method call is located and then use
that as a method parameter. The more closer a type compatible
variable is declared, the higher the possibility of using the
variable as a method argument. That is why the first and the
last rules are more effective than the other two rules. However,
there are also a number of exceptions to this parameter usage
pattern. We observe cases where developers declare a list of
Component variables, initialize them and then add them to a
container in the same order they are declared. Situation can
be worse when there are a large number of variables that are
type compatible with the parameter type. In that case, JDT
fails to guess the correct method parameter within top three
positions.

We observe two interesting patterns. First, a developer

Fig. 5: An example of parameter recommendation by Eclipse
JDT for the topBox.add() method. The actual parameter tool-
barBox is placed at the sixth position by JDT. In case there
are more type compatible local variables, JDT would place
toolbarBox parameter in a more lower position. Our proposed
technique can guess the parameter in the top position.

declares a list of local variables at the beginning of a method
body. However, they initialize the variable just before using
them as a method argument. Second, often developers initialize
or assign a new value to the field variable and in the next
statement they use the variable as a method parameter (see
Figure 4). Since, Eclipse JDT puts field variables after the
local variables, it fails to guess many field variables as a
method parameter within the top positions. In both cases,
instead of the declaration location, the recent initialization
location of a variable can help us better predict the correct
method parameter (see Figure 5).

We were interested to see whether the above findings can
help us to improve parameter completion results. We change
the sorting rules as follows (we refer to this as the modified
approach): The more closer a variable is declared, initialized
or assigned new values to the method parameter the higher
the priority of the variable would be. Then there will be the
unused parameters of the enclosing method, any unused class
variables and finally, any unused inherited field variables. We
use the term unused to refer to those class variables, inherited
field variables and enclosing method parameters that are not
initialized or assigned any new value prior to calling the target
method in its enclosing method.

To evaluate our proposed sorting mechanism with that of
the Eclipse JDT, we develop two different programs. Both
programs parse each source file to identify the location of each
method argument of simple name category and perform static
analysis to generate the candidate set. However, they sort the
candidate variables in two different ways. The first program
imitates the sorting mechanism of JDT and the second program
uses our proposed sorting rules. We identify the location of the
target variable in the sorted list of candidates in both cases and
record the results. For testing, we again use Eclipse 3.7.2 and

NetBeans as subject systems. For the first system we consider
parameters of SWT library method calls and for the second
system we consider Swing/AWT library method parameters.

If the usage context of a requested method parameter
best matches with that of a simple name parameter in code
examples, Parc collects and sorts the type compatible variables
using the modified approach described above. Next, it suggests
the top most variable as a method parameter. Thus, it is
important to improve the result for the top position. Table V
shows the percentage of correctly predicted simple name
parameters for the top position.

In general, our modified approach performs better than
JDT for the top position. For example, for the local variable
category, the relative improvement is 24.67% for the Eclipse
system. We also observe improvement for field variables.
Although our proposed change did not result in good results
for the parameters, the relative improvement for the local
variables is much higher than the relative performance decline
for the parameter category. Moreover, the number of field
variables and the number of cases developers use a field
variable as a method parameter are much higher than the
corresponding values for the parameter category. We also
observe similar result for the NetBeans.

VII. DISCUSSION

A. Why did Precise not perform well?

We further investigated to determine why Precise did not
perform well with the NetBeans system. One of the rea-
sons that contribute to the poor results of Precise is that
in many cases it only partially detects the target parameter.
For example, if the expression type of the parameter is a
method invocation, Precise detects the name of the method
invocation correctly but fails to identify the receiver of that
method invocation correctly or vice versa. Consider that
Precise finds a match of the query context with that of a
method parameter in the training code example, where the
expression type of the parameter is a method invocation (i.e.,
frame.getContentPane()) with simple name as the receiver (the
type of the receiver is javax.swing.JFrame). Precise collects all
simple names of the same type within the scope of the query
(consider there are three simple names: f, myFrame, frame),
substitute the receiver with each simple name and recommends
all of them (f.getContentPane(), myFrame.getContentPane(),
frame.getContentPane()). However, it fails to determine which
simple name in the current context is deemed for the receiver
of the parameter expression. Parc on the contrary replace the
receiver with only that simple name that it finds most probable.

B. Runtime Performance

The time required for a recommendation is an important
concern of the usability of any code completion system.
We have measured the runtime of Parc in recommending
completion proposals on a desktop computer equipped with a
Core i7 CPU and 10 GB of memory. On average Parc requires
45 milliseconds to recommend completion proposals, which is
considerably negligible. This indicates that Parc can be easily

TABLE VI: Cross-project prediction results of Parc under two
different settings

Recommendatons Precision (%) Recall(%)
A B A B

Top-1 14.52 35.49 14.01 34.57
Top-3 31.00 52.51 29.90 51.16
Top-5 38.74 59.47 37.38 57.94

Top-10 44.30 69.06 42.75 67.28

integrated with the Eclipse JDT code completion system and
also leaves the opportunity to include addition type analysis.
We are currently working on the implementation of Parc as
an Eclipse plugin.

C. Cross-Project Prediction

If developers want to use our code completion system
at an early stage of their project, it would be difficult to
train the system due to lack of code examples. This problem
can be solved by using code examples from other projects.
We were interested to find whether we can apply Parc in a
project by training code examples from other projects. This is
referred to as cross-project prediction. Cross-project prediction
can be difficult due to the differences in project structure,
development teams, and programming rules. To perform cross-
project prediction we use two different settings: (A) we train
Parc using code examples from NetBeans, ArgoUML and
JFreeChart for the SWT and Swing libraries. The test cases
are collected from the JEdit system. (B) We repeat the same
test but this time we allow code examples from JEdit (except
those we use for testing) also to train Parc. As time passes
and a project becomes mature, more code examples will be
available. The second setting imitates this scenario. It should
noted that we consider in this experiment all eleven parameter
expression types Parc can detect.

Table VI shows the result of our cross-project prediction.
When Parc does not have any knowledge about the test project
(Setting A), it achieves 44.30% precision and 42.75% recall
value for the top ten positions. Reducing the number of recom-
mendations also penalizes the performance considerably. For
example, the precision and recall values are around 14% for
the top position. When we check the result we found that this
is due to the differences in the projects. Many of the parameter
values are only specific to the JEdit project although there are
many type compatible values exist. For example, in many cases
developers use the following method invocation expression as
a method parameter: jEdit.getBooleanProperty(...), only spe-
cific to the JEdit system and our technique fails to recommend
correct prediction in all those cases.

When we include code examples from JEdit for training
(Setting B), we observe 100% improvement in the precision
and recall values for the top position. For the top ten recom-
mendations, the precision value is 69.06% and the recall value
is 67.28%. This also indicates that if the training data contains
parameter usage examples similar to the test cases, then Parc
can detect them. When applying a parameter recommendation
system at an early stage of a project, we possibly need to use

projects similar to the test project and also add examples from
the project as it grows in size.

VIII. THREATS TO VALIDITY

There are a number of threats to this study. First, one can
argue that the results may not generalize for other systems and
for different libraries. We want to point to the fact that these
are popular libraries and used by various software applications.
The subject systems are large in size, have long development
history and also used in various other studies [9], [1].

Second, there is no public API available to collect Eclipse
JDT parameter completion results. We implement the algo-
rithm used by JDT to guess parameter proposals. Although we
cannot guarantee that there is no error in our implementation,
we were very careful during implementation of the algorithm.
To avoid any error we have manually tested the results of our
implementation with proposals made by JDT. We did not find
any difference in the results during our manual inspection.

Third, there are a few parameter expression categories we
ignore in this study (such as infix expression, postfix expres-
sion etc.). The reason is the variability in those expression
categories that make them difficult to predict. Moreover, they
represent only a small fraction of total parameters. It should be
noted that our technique supports large number of parameter
expression categories compared to Precise.

IX. CONCLUSION

Towards the goal of developing an automatic parameter
recommendation system, in this paper we first conduct a
study to learn how developers complete method parameters
in practice. This helps us better understand parameter usage
patterns. Based on our observation, we develop a technique,
called Parc, that leverages source code localness property to
capture the parameter usage context. The technique models
the context by considering the four lines prior to the method
invocation containing the parameter. Evaluation with a number
of subject systems shows that Parc can recommend method
parameters with consistently good performance. We also com-
pare our proposed technique with Precise, the only available
state-of-the-art parameter recommendation technique, and find
satisfactory results. Moreover, Parc supports a large number
of parameter expression types for recommendation compared
to Precise. In addition, we also explore parameter recommen-
dation support of Eclipse JDT and show a way to improve the
recommendation of method parameters for the simple name
category. Our study reveals that we can model the parameter
usage context with limited information rather than considering
various different features that may not be always available.

We are currently working on the development of an Eclipse
plugin that implements the technique. We are planning to
conduct a user study to identify the usefulness of our pro-
posed technique. The code, data used in the experiment, and
additional information can be found online [28].

Acknowledgements: We would like to thank Cheng Zhang
for providing us the Precise tool and for giving us useful
suggestions.

REFERENCES

[1] D. Hou and D. M. Pletcher, “An evaluation of the strategies of sorting,
filtering, and grouping API methods for Code Completion”, in Proc.
ICSM, 2011, pp. 233-242.

[2] R. Hill and J. Rideout, “Automatic method completion”, in Proc. ASE,
2004, pp. 228-235.

[3] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou,
“Automatic parameter recommendation for practical API usage”, in Proc.
ICSE, 2012, pp. 826-836.

[4] D. M. Pletcher and D. Hou, “BCC: Enhancing code completion for better
API usability”, in Proc. ICSM, 2009, pp. 393-394.

[5] M. Mooty, A. Faulring, J. Stylos, and B. A. Myers, “Calcite: Completing
Code Completion for Constructors Using Crowds”, in Proc. VLHCC,
2010, pp. 15-22.

[6] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “GraPacc:
A graph-based pattern-oriented, context-sensitive code completion tool”,
in Proc. ICSE, 2012, pp. 1407-1410.

[7] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen,
J. Al-Kofahi, and T. N. Nguyen, “Graph-based pattern-oriented, context-
sensitive source code completion”, in Proc. ICSE, 2012, pp. 69-79.

[8] R. Robbes and M. Lanza, “How Program History Can Improve Code
Completion”, in Proc. ASE, 2008, pp. 317-326.

[9] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems”, in Proc. FSE, 2009, pp. 213-222.

[10] D. Hou and D. M. Pletcher, “Towards a better code completion system
by API grouping, filtering, and popularity-based ranking”, in Proc. RSSE,
2010, pp. 26-30.

[11] M. Bruch, T. Schäfer, and M. Mezini, “On evaluating recommender
systems for API usages”, in Proc. RSSE, 2008, pp. 16-20.

[12] “The Eclipse” http://www.eclipse.org/
[13] “The NetBeans” https://netbeans.org/

[14] “The jEdit” http://sourceforge.net/projects/jedit/
[15] “The ArgoUML” http://argouml.tigris.org/
[16] “The JHotDraw” http://sourceforge.net/projects/jhotdraw/
[17] G. S. Manku, A. Jain and A. D. Sarma, “Detecting NearDuplicates for

Web Crawling”, in Proc. WWW, 2007, pp. 141-150.
[18] M. S. Charikar, “Similarity estimation techniques from rounding algo-

rithms”, in Proc. STOC, 2002, pp. 380-388.
[19] M. Pradel , S. Heiniger , T. R. Gross, “Static detection of brittle

parameter typing”, in Proc. ISSTA, 2012, pp. 265-275
[20] M. Asaduzzaman, C. K. Roy, K. A. Schneider, Daqing Hou, “CSCC:

Simple, Efficient, Context Sensitive Code Completion”, in Proc. ICSME,
2014, pp. 71-80.

[21] M. Pradel , S. Heiniger, T. R. Gross, “Detecting anomalies in the order
of equally-typed method arguments”, in Proc. ISSTA, 2011, pp. 232-242.

[22] Z. Tu and Z. Su, and P. Devanbu, “On the Localness of Software”, in
Proc. FSE, 2014, pp. 269-280.

[23] F. Thung, W. Shaowei Wang, D. Lo and J. Lawall, “Automatic recom-
mendation of API methods from feature requests”, in Proc. ASE, 2013,
pp. 290-300.

[24] “The StackOverflow Question” http://stackoverflow.com/questions/
14124328

[25] “The Eclipse JDT Documentation” http://help.eclipse.org/juno/topic/org.
eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/Expression.html

[26] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse IDE?”, IEEE Software, vol. 23, no. 4, 2006,
pp. 76-83.

[27] M. P. Robillard, “What Makes APIs Hard to Learn? Answers from
Developers”, IEEE Software, v.26 n.6, 2009, pp.27-34

[28] “Source code and data” https://asaduzzamanparvez.wordpress.com/parc/
[29] M. P. Robillard , R. Deline, “A field study of API learning obstacles”,
Empirical Software Engineering, v.16 n.6, 2011, pp.703-732

