PARC: Recommending API Methods Parameters

Muhammad Asaduzzaman Chanchal K. Roy

Kevin A. Schneider

Department of Computer Science, University of Saskatchewan, Canada
{md.asad, chanchal.roy, kevin.schneider} @usask.ca

Abstract—APIs have grown considerably in size. To free
developers from remembering every detail of an API, code
completion has become an integral part of modern IDEs. Most
work on code completion targets completing API method calls
and leaves the task of completing method parameters to the
developers. However, parameter completion is also a non-trivial
task. We present an Eclipse plugin, called PARC, that supports
automatic completion of API method parameters. The tool is
based on the localness property of source code, that is developers
tend to put related code fragments close together. PARC combines
contextual and static type analysis to support a wide range of
parameter expression types.

Index Terms—Code completion, API methods, method param-
eter, Eclipse plugin

I. INTRODUCTION

Modern software development heavily depends on the use
of APIs. An API provides access to already implemented
functionality to accomplish a particular task. Developers need
to learn these APIs to use them effectively during software
development. The problem is that APIs have grown con-
siderably these days and that makes them difficult to learn
and remember [1]. To free developers from remembering
every detail, modern integrated development environments
contain a code completion feature. They typically support
automatic completion of API method calls but leave the task of
completing method parameters to developers. Unfortunately,
parameter completion is also a non-trivial task [7]. Unless
otherwise specified, we use the term parameter to refer to the
actual parameter.

Although some IDEs, such as Eclipse, can suggest method
parameters, their support is very limited. For example, con-
sider that a developer is developing a GUI using Java Swing
APIs. To add a component to a container, she needs to call
its add method with two parameters. The first parameter
specifies the location on where the component to be added
in the container and the second one is the component to be
added. While she recalls the method name and the component
to be added, she cannot remember what to use to specify
the location. She resorts to the parameter completion support
of Eclipse. While the method signature tells that the first
parameter is of String type but the problem is that there can
be a large number of objects whose type matches with the
expected parameter type. One solution is to read the API
documentation again but that requires additional time and
effort. Eclipse fails to recommend the target parameter, which
undermines the benefit of code completion and indicates a
need for additional support.

In this paper, we present the novel feature, architecture
and implementation details of PARC, an Eclipse plugin that
supports automatic completion of method parameters. The
tool collects parameter usage context from past code exam-
ples and only considers tokens close to the target param-
eter position. When a developer requests for a parameter
completion, PARC matches the current usage context with
that of collected examples. Static type analysis is performed
next to refine previously matched example parameters to
the current development context. The refined parameters are
then reported to developers through completion popups. The
detail description of the technique including a comprehensive
evaluation of the tool can be found else where [8]. The
plugin and the source code is available to download from
https://asaduzzamanparvez.wordpress.com/parc/.

The paper is organized as follows. Sections II describes the
features and summarizes the operation of PARC. Section III
describes the architecture of the plugin. Section IV presents the
performance as well as the implementation details. We briefly
discuss related work in Section V and Section VI summarizes
limitations. Finally, Section VII concludes the paper.

II. FEATURES

PARC is available as an Eclipse plugin and activates auto-
matically when a developer selects an appropriate method call
from a completion popup. Since Eclipse Java Development
Tools (JDT) supports various different forms of code comple-
tions, it is expected that PARC does not interfere with code
suggestions other than method parameters. To achieve this
the plugin intercepts the recommendations made by Eclipse
JDT. It also collects current parameter usage context and
queries the model with that information. The model contains
parameter usage examples from a large number of open source
projects. The query returns a list of method parameters and
PARC puts the top-3 recommended parameters on top of JDT
completion proposals by default. However, the number of
recommendations made by PARC can be configured by the
user. The plugin can be enabled or disabled by accessing its
own preference page in the Eclipse IDE.

PARC operates in two different phases. Due to space con-
straints we only summarize these phases briefly as follows
(Details of the technique can be found elsewhere [8]):

A. Model Generation

The plugin requires a model for recommending method
parameters. A model consists of parameter usage examples
collected from open source software systems. A parameter

action = new JRadioButton(jEdit.getProperty("op
+ ".add.action"));

action.addActionListener(actionHandler);

grp.add(action);

action.setSelected(true);

grp.add(action);
typePanel.add(action); A

action.setSelected(true);
typePanel.add(action);
<seontent.add
@ add(Component comp) : Component - Co
APanel g g add(PopupMenu popup) : void - Component
© add(Component comp, int index) : Component
© add(Component comp, Object constraints) : vo
Collecti @ add(String name, Component comp) : Compon|
String 1 © add(Component comp, Object constraints, int |
for (Act © addAncestorListener(AncestorListener listener)
@addComponentListener(ComponentListener 1) ¢
if (g addContainerListener(ContainerListener) : voiy
@ addFocusListener(FocusListener I) : void - Conf
wadog & addHierarchuio,

BorderLayout.SOUTH
JPanel actio gy BorderLayout.NORTH
actionserpy | J¥ BorderLayout WesT
ctionSetl] | 4 gordertayout EAST
Collection<A W BorderLayout CENTER

ActionSe

for (ActionS © getSelection)
@ getName()

if (acti o getWarningString()
@ getTitle()

|
Space’ ype Proposals avadoc [E4[null

action = new JRadioButton(jEdit.getProperty("options
+ ".add.action"));
action.addActionListener(actionHandler);

ain E> content .add(BorderLayout.SOUTH, action)

String lasts @ CONTEXT_ADD_DIALOG_LAST_SELECTION

action = new JRadioButton(jEdit.getProperty("options.context"
+ ".add.action"));
action.addActionListener(actionHandler);

grp.add(action);

B action.setSelected(true); (o]
typePanel.add(action);
content.add(BorderLayout.SOUTH, fction)

|i> Fr action
Jpanel actionPanel = new JPanel(gy separator

 typePanel

t GUIUtIlities.createMultilineLabel(

comp

content I

ActionSet[] actionsList = action

Collection<ActionSet> actionSets
String lastSelectionLabel - jEdi ©
for (ActionSet actionSet : actig @ combo
o cancel
if (actionSet.getActionCount o list
5 ok
_rootPane

avadoc [Declaration Search

Fig. 1: An example of using PARC to complete method parameters

usage example consists of a parameter usage context, the
method name, the receiver type of the method, the type and
position of the parameter as described in the method signature.
The parameter usage context in our case consists of any
method names, any keywords except access specifiers, and
any type names that appears within the previous four lines
prior to a method parameter position. PARC ignores any lines
that is either empty or contain only curly braces, comments
or a combination of both. The receiver type of the method,
its name, and the parameter position are used to index the
parameter along with the parameter usage context.

B. Method Parameter Recommendation

This phase consists of the following three steps:

1) Query Information Collection: When a developer selects
a name from the method call completion popup, the plugin
activates. It collects the current parameter usage context (also
referred to as the query context) along with the receiver type of
the method call, the name of the method, parameter positions
and their types as described in the method signature. The
later four pieces of information are used to collect method
parameters along with their usage contexts from the model.

2) Determine contextual similarity between query and ex-
amples: The next step is to determine the similarity between
the query context with that of the examples. The plugin lever-
ages a locality sensitive hashing technique, called simhash, to
quickly determine a fuzzy distance between the query context
and that of examples. It then sorts the associated parameters
based on the ascending order of the distance value and selects
the top 500 parameters. Next, it sorts the candidate parameters
based on the descending order of similarity value calculated
using cosine similarity. This is computationally expensive
but provides more accurate similarity measure. These sorted
parameters are referred to as likely parameter candidates.

3) Static Type Analysis and Recommendation: The objec-
tive of this step is to adapt the parameters to the current
development context. PARC employs rules to do that. For
example, if the parameter is a method invocation or a qualified
name and the receiver is a simple name, the plugin looks for
the variable whose type matches with the receiver type, located
within the scope of the method call and is referenced closest
to the parameter position. It then replaces the receiver with
that variable before making any recommendation.

After removing any duplicates, the plugin recommends the
top three parameters by putting them on top of the JDT

Parameter Completion

Request Models Stored
7 Codebase in FTP Server

Query Processor

—
\I/ Local Model Model
Database Manager
Query
Features
_/—
Parameter Usage
Examples
Matched Matcher
Parameters
Static Type ~ Adapted Ranked Code Recommended
Analyzer Parameters Completion =] Parameters

Fig. 2: Architecture overview of PARC

completion proposals. This number can be changed by setting
a different value in the preference page of the plugin.

Figure 1 shows an example of the plugin in action. A
developer requests for method call completion by pressing a
dot after typing the variable name (see Figure 1A). Eclipse
shows the possible completion proposals through a popup
menu. The developer selects the add method with String
and Component parameter types. As soon as the developer
makes the selection by pressing the enter key, PARC activates
and recommends completion proposals through another popup
menu starting with the first parameter (see Figure 1B). The
suggestions made my PARC are highlighted with a different
icon. The developer can cycle through the other parameters by
pressing the tab key (see Figure 1C).

III. ARCHITECTURE

Figure 2 shows the architecture of PARC. The plugin
consists of four different components. The model manager
is responsible for downloading models from a remote server
where we plan to periodically update new models. It also
generates models from actively loaded projects in the client
IDE. The above operations are performed in the background
thread to avoid interruption of the current development session.
The query processor is responsible for collecting required
information for the parameter completion request. The matcher
component takes that as input and interacts with the model
manager component to look for method parameters whose
context matches with the query context. It passes the result to
a static type analyzer that adapts the matched parameters with
the current development context. Finally, the code completion
component accepts the modified ranked method parameters
and combines them with JDT completion proposals. If a

proposal is made by both, PARC removes the duplicate entry
from JDT proposals. Furthermore, the recommendations made
by PARC appears on top of JDT proposals.

IV. PERFORMANCE AND IMPLEMENTATION

This section briefly summarizes the accuracy and runtime
performance of PARC. Details of the evaluation procedure and
results can be found in a separate paper [8]. We also highlight
the plugin implementation.

A. Accuracy and Runtime Performance

We compared PARC with the only available state-of-the-
art parameter recommendation technique, called Precise. We
used code examples from Eclipse and NetBeans software
systems. For the first system we used SWT library method
parameters and for the second system we used method pa-
rameters of Swing+AWT libraries. In both experiments, PARC
outperformed Precise. For example, for the Eclipse system and
for the top three recommendations Precise achieves 42.68%
precision and 30.88% recall values. PARC on the contrary
achieves 46.29% precision and 43.98% recall value. The
difference becomes more significant for the NetBeans system.
PARC achieves 36.76% more precision and a 33.16% higher
recall value than Precise. It should be noted that in both
experiments we only consider those parameter expressions that
are supported by Precise.

We also evaluated the execution time of PARC. On average,
PARC required 45 milliseconds to recommend completion
proposals which is comparable with other state-of-the-art
techniques [7].

B. Implementation

PARC is written entirely in Java. We initially planned to use
the CompletionProposalComputer extension point of Eclipse
to implement the plugin. Neither that extension point nor
others contribute to parameter completion proposals. The code
responsible for the task is located in the org.eclipse.jdt.ui
plugin. We update the plugin with additional classes and
modify the ParameterGuessingProposal class, to combine rec-
ommendations of PARC with default Eclipse JDT proposals.
To put PARC recommendations on top of that of JDT, we
leverage the relevance value that Eclipse uses internally to sort
completion proposals. Thus, the relevance sorting mechanism
needs to be selected from the content assist preference page
of Eclipse IDE.

V. RELATED WORK

Zhang et al. developed an Eclipse plugin, called Precise,
that leverages past examples to recommend method param-
eters [7]. The most notable difference is that Precise cannot
recommend parameters of the following expression categories:
simple name, boolean, null literal and class instance creation.
However, PARC can recommend parameters of all of the above
expression categories including those that are supported by
Precise. Also both techniques collect the parameter usage
context differently. A number of techniques have been de-
veloped for code completion, but none focuses on method

parameter completion. Bruch et al. developed an Eclipse
plugin to recommend method calls using k-nearest neighbour
algorithm [3]. Hou and Pletcher developed another Eclipse
plugin, called BCC, that uses sorting, filtering grouping of
APIs to recommend method calls [2]. CSCC is a context
sensitive method call completion tool [5]. GraPacc is a tool
that supports automatic completion of API usage patterns [6].
Calcite helps developers to instantiate objects of a class [4].
CACHECA is a general purpose code suggestion tool based on
the cache language model. While the cache component can be
integrated into PARC to capture locally repetitive parameters,
the plugin cannot handle complex parameter expressions.

VI. LIMITATIONS

Collecting parameter usage context in PARC is simple,
requires only tokenization of source code. However, this
simplicity comes with the price that tokens that are not related
with a method parameter can become part of the usage context.
As aresult PARC sometimes recommends incorrect parameters
ahead of the correct one. During our study we observe that
some method parameters are only specific to a file or a project.
Using a global model can lead to incorrect suggestions in
those cases. This matches with the finding of Tu et al. [9].
A possible solution can be interpolating between a local and
a global model, and we are currently working on this.

VII. CONCLUSION

We describe an Eclipse plugin, called PARC, that combines
the contextual information together with static type infor-
mation to better recommend method parameters. While the
contextual information captures global regularities, static type
analysis is incorporated to capture local aspects of the code
under development. We are currently working to eliminate the
limitations of PARC described in the previous section. We also
plan to conduct a user study to understand the usefulness of
the tool.

REFERENCES

[1] M. P. Robillard, “What Makes APIs Hard to Learn? Answers from
Developers”, IEEE Softw., vol. 26, pp. 27-34, Nov. 2009.

[2] D. M. Pletcher and D. Hou, “BCC: Enhancing code completion for better
API usability”, in Proc. ICSM, 2009, pp. 393-394.

[3] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems”, in Proc. FSE, 2009, pp. 213-222.

[4] M. Mooty, A. Faulring, J. Stylos, and B. A. Myers, “Calcite: Completing
Code Completion for Constructors Using Crowds”, in Proc. VLHCC,
2010, pp. 15-22.

[5S] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “CSCC:
Simple, Efficient, Context Sensitive Code Completion ”, in Proc. ICSME,
2014, pp. 71-80.

[6] A.T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “GraPacc:
A graph-based pattern-oriented, context-sensitive code completion tool”,
in Proc. ICSE, 2012, pp. 1407-1410.

[7]1 C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou,
“Automatic parameter recommendation for practical API usage”, in Proc.
ICSE, 2012, pp. 826-836.

[8] M. Asaduzzaman, C. K. Roy, K. A. Schneider, “Exploring API Method
Parameter Recommendations”, accepted to be published in Proc. ICSME,
2015, pp. 10.

[9] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software”, In Proc.
FSE, 2014, pp. 269-280.

