
FEMIR: A Tool for Recommending Framework
Extension Examples

Muhammad Asaduzzaman Chanchal K. Roy Kevin A. Schneider Daqing Hou†
Department of Computer Science, University of Saskatchewan, Canada

†Electrical and Computer Engineering Department, Clarkson University, USA
{md.asad, chanchal.roy, kevin.schneider}@usask.ca, dhou@clarkson.edu

Abstract—Software frameworks enable developers to reuse
existing well tested functionalities instead of taking the burden
of implementing everything from scratch. However, to meet
application specific requirements, the frameworks need to be
customized via extension points. This is often done by passing
a framework related object as an argument to an API call. To
enable such customizations, the object can be created by extend-
ing a framework class, implementing an interface, or changing
the properties of the object via API calls. However, it is both a
common and non-trivial task to find all the details related to the
customizations. In this paper, we present a tool, called FEMIR,
that utilizes partial program analysis and graph mining technique
to detect, group, and rank framework extension examples. The
tool extends existing code completion infrastructure to inform
developers about customization choices, enabling them to browse
through extension points of a framework, and frequent usages
of each point in terms of code examples. A video demo is made
available at https://asaduzzamanparvez.wordpress.com/femir.

Index Terms—API, framework, reuse, extension point, exten-
sion, partial program analysis, graph mining

I. INTRODUCTION

When developing applications, developers extensively rely
on software frameworks to save both development time and
effort. This is largely due to the fact that frameworks enable
developers to reuse existing functionalities instead of work-
ing from scratch. Besides reusability, another advantage of
using a framework is that the existing implementation can
be customized. This is particularly useful when the current
framework implementation does not directly meet application
specific requirements.

A popular way to customize the behavior of a framework
is to pass a framework related object as an argument of an
API call. The object can be created by extending framework
classes, implementing framework interfaces, or by changing
the default properties of the object via setter method calls. We
call the formal parameter of the API call an extension point.
For example, consider the case of the JTree class in the Java
Swing framework. There can be several ways of extending the
functionality of the JTree class. For instance, a TreeModel can
help to define a tree structure displayed by an instance of the
JTree class. A developer can define her own implementation
of the TreeModel and call the setModel method of the JTree
with an argument of a new TreeModel object to control the
tree data structure. A TreeCellRenderer defines the way a JTree
should display its nodes. Furthermore, a developer can provide
her own implementation of the TreeCellRenderer interface and

call the setCellRenderer method with an argument of a new
TreeCellRenderer object to customize the display of nodes
(see Figure 1). The formal parameters of the above method
calls (TreeModel for setTreeModel and TreeCellRenderer for
setTreeCellRenderer) are thus examples of extension points
of JTree that allow a developer to gain finer control over the
behavior and presentation of the framework class JTree.

In general, there can be several ways to work with an
extension point. For example, a developer can create a custom
tree data structure by implementing the TreeModel interface,
by extending the AbstractTreeModel class, or by using the
DefaultTreeModel class. She can then use one of the construc-
tors of the JTree class or the setModel method to register the
custom tree model to an instance of the JTree class.

Learning how to correctly customize a framework via
extension points is an important and non-trivial task. In this
paper, we present a tool for discovering framework extension
points and code examples that illustrate how to customize
the framework, called FEMIR (Framework Extension Point
Miner and Recommender). The tool performs static analysis
of the source code examples to identify framework extension
points, represents their usages as framework extension graphs,
and indexes code examples that contain such graphs. To
inform developers about related extension points, the tool takes
advantages of the code completion infrastructure of the Eclipse
integrated development environment (IDE). When a developer
types a dot (.) after a receiver object, the tool determines the
qualified type name of the receiver object to identify related
extension points and integrate the results with code completion
proposals. Once a developer selects an extension point from
the completion popup menu, FEMIR enables the developer
to examine different ways of using the extension point, to
browse relevant code examples and to learn related extension
points. Full details of the technique including a comprehensive
evaluation of the tool can be found elsewhere [1].

The rest of the paper is organized as follows. Section II
describes the related work. We explain the feature of FEMIR
in Section III. Section IV presents the architecture of the tool.
We present a use case scenario in Section V. Section VI sum-
marizes accuracy and runtime performance of the technique.
Section VII presents a user study to understand the usefulness
of the tool. Finally, Section VIII concludes the paper.

https://asaduzzamanparvez.wordpress.com/femir


Examples that use TreeCellRenderer 
extension point

JTree tree = new Tree (…);
TreeCellRenderer renderer = new 
        CustomTreeCellRenderer(...);
tree.setCellrenderer(renderer);

CustomJTree tree = new CustomJTree 
(…);

JTree tree = new Tree (…);
DefaultTreeCellRenderer renderer = 
   new DefaultTreeCellRenderer(...)
renderer.setFont(…);
renderer.setLeafIcon();
tree.setCellrenderer(renderer);

JTree tree = new JTree (…);
TreeCellRenderer renderer = new 
 CustomDefaultTreeCellRenderer(...);
tree.setCellrenderer(renderer);

public class CustomTreeCellRender implements 
             TreeCellRenderer{
  //override 
  public Component getTreeCellRendererComponent(…){
     ...
  }
}

public class CustomDefaultTreeCellRender extends 
             DefaultTreeCellRenderer{
  //override 
  public Component getTreeCellRendererComponent(…){
     ...
  }
}

public class CustomTreeCellRender extends JLabel 
             implements TreeCellRenderer{
  //override 
  public Component getTreeCellRendererComponent(…){
     ...
  }
}

public class CustomJTree extends JTree{
  //override 
  public TreeCellRenderer getCellRenderer(){
     ...
  }
}

use

use

use

use

1

2

3

4

Fig. 1. Using an extension point (TreeCellRenderer) of the JTree class to gain finer control over cell rendering. Code examples on the left-hand side show
four different ways of using the TreeCellRenderer extension point.

Fig. 2. An example of FEMIR suggesting framework extension points for
the javax.swing.JTree receiver type. Extension points are sorted based on the
frequencies they are used in the code repository.

II. RELATED WORK

Dagenais and Ossher [5] focus on finding framework usage
examples because examples are a form of documentation in
themselves. The technique has been implemented in a tool
called XFinder. It requires developers to create guides as a
sequence of steps for using framework extensions where the
steps of a guide are expressed as concerns using Mismar, a
concern oriented documentation toolset. Given a code base
and a framework, XFinder can locate examples implementing
each step of the guide. While their technique focuses on

Fig. 3. Preference page to configure various options of the FEMIR plugin.

finding framework extension examples, we focus on finding
framework extension points and their usages. Another differ-
ence is that our technique does not require to provide the set
of steps required to use framework extension points, rather
FEMIR uses source code analysis together with graph mining
technique to identify these steps automatically.

Bruch et al. [2] proposed a technique that mines four
sub-classing directives of object-oriented white box frame-
works [2]. These are method overriding directives, method
extension directives, method call directives and class extension
scenario. While the technique can answer how to extend a
class, it does not focus on identifying how to use that extended
class. On the contrary, FEMIR can answer both questions.



Fig. 4. Once the TreeCellRenderer extension point is selected (third entry in Figure 2), FEMIR shows all of its framework extension graphs grouped by
categories (bottom view), as well as visualization of a selected graph from the Customize category (top left) and a framework extension that is an example
of the graph (top right). The selected example corresponds to case number 4 in Figure 1.

In a different study, Bruch et al. [3] developed a tech-
nique that mines framework usage examples to collect reuse
rules [3]. While they use association rule mining to determine
reuse rules, we apply graph mining technique. Furthermore,
our reuse rules tend to be larger than theirs.

Thummalapenta and Xie [7] developed a technique, called
SpotWeb, that given a framework determines both hotspots and
coldspots leveraging code search engines. However, SpotWeb
does not focus on identifying how to extend the functionality
of framework classes.

Techniques that mine frequent patterns in source code
examples are also related to our study. Zhong et al. [8]
developed a technique, called MAPO, that uses sequential
pattern mining technique to discover frequently used method
call sequences. Nguyen et al. [6] proposed GrouMiner, a
graph-based approach that can mine frequent usage patterns
involving multiple objects from source code. The above tech-
niques do not focus on detecting API usages spread across
multiple source files. However, framework extensions may
spread across multiple files and the same extension point can
be used in multiple ways. FEMIR handles both.

III. FEATURES

FEMIR is available as an Eclipse plugin. It can be activated
to detect framework extension points and their usages by
mining source code examples. This requires to select appro-
priate commands from the menu. When a developer types
a dot (.) after a receiver expression to suggest completion
proposals, FEMIR also activates to recommend relevant exten-
sion points (Figure 2). However, this requires that extension

point detection results from a previous run of FEMIR and
the corresponding source code are available to the plugin. To
avoid interrupting other types of completion proposals (such as
method completion proposals), we put the recommendations of
FEMIR in a separate completion proposal category and the tool
recommends a fixed number of extension points. However, this
number can be configured by the user. The plugin can be en-
abled or disabled from its own preference page in the Eclipse
IDE (Figure 3). When a developer selects the completion
proposal made by FEMIR, the plugin shows extension point
usage patterns in a view of the Eclipse workbench window
using a JFace TreeViewer component (Figure 4). Developers
can see the framework extension graph of the usage pattern
and other related extension points by selecting a leaf node
of the tree. When a developer selects a node in the graph,
FEMIR shows the corresponding code example. For example,
a developer can select a node representing overridden method
and FEMIR shows code examples to help her learning how to
override that method. Depending on the selection of nodes
in graph the code example also changes. For example, if
a developer selects a node representing a client class that
implements a framework interface, FEMIR shows examples of
implementing that interface. This includes all the methods that
are overridden to implement the interface. Developers can also
learn related extension points and several framework extension
directives that goes together. For example, if a developer
selects the TreeModel extension point, FEMIR also suggests
implementing a TreeCellRenderer extension point. This is
done based on the association property of extension points.
Similarly, by selecting an overridden method developers can



Fig. 5. Working process of the graph miner of FEMIR

Fig. 6. Overview of the recommender component of FEMIR

learn which other methods are frequently overridden with the
selected one.

IV. ARCHITECTURE

The FEMIR tool is written entirely in Java and implemented
as an Eclipse plugin. It consists of two main components.
These are the miner and the recommender. Figures 5 and
6 summarize the working process of these components. We
briefly describe both components below. However, further
information on both components can be found elsewhere [1].

A. Miner

The Miner component is responsible for detecting frame-
work extension points. It identifies their usages and mines
frequent patterns of using framework extension points. It
works in the following steps.

1) Collecting framework information: FEMIR requires that
the framework jar file is included in the target project. It
collects the fully qualified name of classes, interfaces, super
classes, and implemented interfaces. For each method, FEMIR
collects the method name, return type and types of parameters.

2) Downloading code examples: FEMIR can collect rel-
evant code examples of the input framework from GitHub1

code repository. Our selection is based on the fact that a
large number of open source repositories are available and
GitHub provides public APIs to search and download code
examples. Alternatively, developers can also instruct FEMIR
to use previously downloaded code examples. For example,
to identify repositories that use the Swing API, we use the
following query: import AND javax AND swing. The tool
selects those repositories that are written in Java language
and have forked at least once. After collecting repository
information, FEMIR downloads source code examples.

3) Analyzing code examples: The goal of this step is to
identify relevant extension points and generate framework
extension graphs. There are two issues that need to be dealt

1https://github.com/

with. First, the code examples may be incomplete or syntac-
tically incorrect. Second, type bindings of API method calls
are usually missing that are essential to identify usages of
framework extension points. FEMIR uses the Eclipse JDT
parser to parse the source files and also uses the PPA (partial
program analysis) for Eclipse plugin, to resolve type bindings
of source code elements [4]. The JDT parser can handle source
files that are incomplete or contain syntactic errors. The PPA
plugin is currently only available for the Eclipse 3.6 (Helios)
and supports Java 5 constructs2. FEMIR inherits this limitation.

4) Generating framework extension graphs: A framework
extension graph describes how a framework extension point is
used. Figure 4 shows an example of a framework extension
graph where a developer uses the TreeCellRenderer extension
point. Here, the developer creates a client class by implement-
ing the TreeCellRenderer interface and registers an instance
of the class using the setCellRenderer method argument of an
instance of the framework class JTree. To determine frame-
work extension graphs, the first step is to generate framework
extension points. FEMIR analyzes API method calls that has at
least one parameter and is related to the target framework type.
Thus, the argument to the method call can be a framework
class object. Alternatively, it can be created by extending
a framework class, implementing framework interfaces or
a combination of both. FEMIR then generates the graph
structure by considering the receiver variable, the method
call, the parameter, the argument, and those methods that are
called on the receiver or argument variable. If the receiver
or the argument is created by extending framework classes
or implementing framework interfaces, FEMIR considers the
extended classes, implemented interfaces, overridden methods
and methods that are called in overridden method bodies to
generate the framework extension graph.

5) Indexing framework extension graphs: The graphs are
indexed based on the receiver type of the method call and
the formal parameter type. The indexing is done for effective
retrieval of source code. In addition, we also index lists of
extension points (i.e., the formal parameters of method calls)
by their receiver type. This enables FEMIR to find all different
extension points given a receiver type.

6) Mining graphs: Given a receiver type and an extension
point, the goal of this step is to mine frequent patterns of using
that extension point. Given a set of n graphs (also known as
base graphs), FEMIR first generates all one node graphs. In the
subsequent steps, FEMIR increases the size of the graphs from
the previous step by one node. The process continues until
all nodes of the graphs are enumerated. To avoid generating
the same subgraph structure, FEMIR uses a canonical form
representation that enables to accurately determine isomorphic
graph structures.

The miner also categorizes the graphs into extension pattern
categories. Each category represents a common way of using
extension points. There are four different extension pattern
categories. The simple extension pattern does not require

2http://www.sable.mcgill.ca/ppa/

https://github.com/
http://www.sable.mcgill.ca/ppa/


extending a framework class, implementing a framework inter-
face or calling methods on the argument object. In a customize
extension pattern, developers call a set of methods on the
argument object to customize the behavior of the class. The
extend extension pattern involves extending a framework class
and the implement extension pattern requires implementing a
framework interface. More detailed explanation and examples
of extension pattern categories can be found elsewhere [1].

B. Recommender

The recommender component is responsible for recom-
mending possible extension points, their usage patterns and
relevant code examples. FEMIR integrates the recommender
component to the Eclipse code completion engine. Given a
receiver type, the recommender thus suggests related extension
points as completion proposals. We use the Complemention-
ProposalComputer extension point of the Eclipse to implement
the code completion component of FEMIR. However, the ex-
tension point only allows to contribute to the list of completion
proposals. The same triggering mechanism (typing the dot af-
ter the receiver variable) is also used by other code completion
components, such as those that contribute to method or field
completion proposals. To avoid interrupting other completion
proposals we position the proposals contributed by FEMIR
to a separate proposal category. When a developer selects
a completion proposal of type JavaCompletionProposal by
pressing the enter key, the apply method is called by the
underlying framework. To detect such selection the completion
proposals contributed by FEMIR are created by extending the
JavaCompletionProposal and we override the apply method
of it to customize the implementation.

When a developer selects an extension point, FEMIR utilizes
the miner component to generate frequent patterns of using the
extension point and group them into four different categories
of extension points. We use SWT and JFace frameworks for
creating graphical user interfaces and presenting results. The
results are presented using a JFace TreeViewer component.
Upon selection of a pattern, the recommender visualizes the
graph structure. We use Zest3, a visualization toolkit for
Eclipse, for displaying graphs. Developers can interactively
browse code examples by selecting different nodes of frame-
work extension graphs. This enables developers to learn usages
of extension points and facilitates adapting the code examples
to their own implementation.

V. A USE CASE SCENARIO

We describe the use of our tool (see Figure 4 for the FEMIR
tool) using a scenario that involves the use of the Swing frame-
work for Java. The framework consists of graphical control
elements that are used to create graphical user interfaces.

Consider that a developer is using the JTable class of the
Java Swing framework to display data collected from the
employees of an office. She wants to mark invalid input of
employees in a different color in the JTable. However, she

3https://www.eclipse.org/gef/zest/

does not know how to do that. She searches the internet
using the following query: “mark invalid input JTable” and the
top results returned from the query are discussing input data
validation on the JTable, which is a different problem. Even
if she is successful, it is difficult to find relevant examples, to
learn related customization choices and to identify important
insights. All these require to search, analyze, and comprehend
a large collection of information.

However, FEMIR makes the whole process much easier.
Let’s consider that she plans to use FEMIR. She opens the
FEMIR tool and search for framework extension points for the
JTable class. Immediately after typing the dot (.) followed by a
variable of the JTable class, she encounters a few class names.
One of them is the TableCellRenderer interface. She realizes
that her problem is related with rendering of JTable cell.
However, she does not know how to use TableCellRenderer
and thus decides to explore further.

When she selects the TableCellRenderer extension point
from the list of completion proposals, FEMIR groups different
patterns of using that extension point and shows them using a
TreeViewer component. She now sees different ways to interact
with TableCellRenderer extension point. She decides to imple-
ment the TableCellRenderer interface because the tool reports
that most developers do that when using the TableCellRenderer
extension point. The developer thinks that an example would
be great to complete her implementation. Double clicking on
the node visualizes a graph structure that shows the way of
implementing and using the TableCellRenderer interface. She
learns from the graph that she needs to override a method to
implement the TableCellRenderer interface. When she clicks
on the node representing the overridden method, the tool
immediately shows how to override the method. She also
explores other nodes to learn how to implement the interface
and how to use the class implementing the TableCellRenderer
interface with a JTable. She then copies code fragments from
those files and adapts that in her own implementation. This
completes her task. This scenario shows that not only the
FEMIR tool helps the developer to learn the framework but
also assists in using the extension point whose usage spans on
multiple source files.

VI. EVALUATION

We briefly summarize the accuracy and runtime perfor-
mance of FEMIR in this section. Full details of the evaluation
can be found elsewhere [1].

We evaluated FEMIR using five different popular frame-
works: Swing, JFace, JUnit, JUNG, and JGraphT. Given an
extension point, we evaluated the effectiveness of the tool in
recommending framework extension graphs that matched with
actual usage of extension points. We used precision, recall
and F-measure to determine the accuracy of recommendations.
They were calculated by considering the overlapping of nodes
between the original graph under testing and the graph sug-
gested by FEMIR. We considered three different recommen-
dation strategies. These were FEMIR-Local, FEMIR-Global,
and FEMIR-D. FEMIR-Local recommends top-n patterns from

https://www.eclipse.org/gef/zest/


within a category. FEMIR-Global recommends top-n graphs
regardless of the category. Finally, FEMIR-D works as follows.
It first determines the top-n graph patterns of an extension
pattern category. It then determines all the base graphs in
the training data that contain the patterns. Among these base
graphs, it recommends those that contain the largest number
of different node types. Results from the study revealed that
FEMIR-Global performed the best. While the precision ranges
from 78% to 90%, the recall ranges from 56% to 79% for the
top-5 recommendations. The F-measure ranges from 67% to
82%. FEMIR-Local performed close to FEMIR-Global. While
the precision ranges from 82% to 92%, the recall ranges from
49% to 73%. The F-measure ranges from 61% to 80%. Finally,
FEMIR-D performed the worse.

In addition to the accuracy of recommendations, we also
measured the runtime performance of the technique. We found
that on overage FEMIR required 0.92s for recommending
framework extension graphs for the Java Swing Framework.
Most of this time was contributed by the process of mining
framework extension graphs. However, we can reduce the rec-
ommendation time by mining framework extension graphs for
all framework extension points beforehand. The tool requires
significantly more time for analyzing source code files and for
generating framework extension graphs. A major part of the
time is contributed by the partial program analysis. However,
this is only a one time operation.

VII. USER STUDY

To understand the usefulness of the FEMIR and to identify
any usability issues quickly, we conducted a preliminary user
study. We used a simple observation process where each
participant worked on three tasks that require customizing
the behavior of framework classes using framework extension
points. We then conducted a semi-structured interview to gain
more insights about the design of the tool. Five volunteers
participated in this study. The participants were all graduate
students and had previous experience working with Eclipse
IDE and Java Swing/AWT libraries. However, the levels of
experience differ across the participant pool. We provided
written description of the tasks and asked the participants to
complete the tasks in 30 minutes. We observed user actions
and interviewed each participant at the end of the study.

In general, the five participants agreed that the tool was
easy to use and recommendations were useful. Three out of
the five users mentioned that they were not aware of some
extension points until FEMIR recommended those extension
points to them. Overall, all users agreed that the tool helped
them to quickly learn usages of framework extension points
and they were successful to make necessary changes to their
code. However, we also learned a few important lessons
from the study. First, three out of the five users searched
on the Internet to learn more about the extension points.
This is because FEMIR did not provide any explanation of
extension points. After talking with users, it became clear that
integrating Javadoc information would have helped them to
understand the goal of using extension points. We also learned

that code examples in GitHub often have dependencies on
other parts of software systems which make them difficult to
comprehend. Thus, some users emphasized on including code
examples that shows the basic usages of framework extension
points. One possible way to improve FEMIR is to enable the
tool to automatically discover web tutorials and include code
examples from those locations. Finally, one user requested
to include the suggestions of framework extension directives
or related framework extension points during extending a
framework class or implementing a framework interface. We
are currently working to address all these issues.

VIII. CONCLUSION

This paper presents FEMIR, a tool that supports automatic
detection of framework extension points and their usages.
Since there can be multiple ways to work with an extension
point, FEMIR supports grouping of extensions by categories.
Developers can use the FEMIR tool to learn extension points
and their different usages. By leveraging a graph mining
technique, FEMIR can rank extension points as well as their
usages based on their frequencies in code examples. This
demonstration will show how FEMIR can be utilized to
learn and use framework extension points while developing
applications. The tool is currently available as an Eclipse
plugin. In the future, we plan to conduct more thorough user
studies to further investigate the usefulness of the FEMIR tool.

ACKNOWLEDGMENT

This work is supported in part by the Natural Science and
Engineering Research Council of Canada (NSERC).

REFERENCES

[1] Muhammad Asaduzzaman, Chanchal K. Roy, Kevin A. Schneider, and
Daqing Hou. Recommending Framework Extension Examples. In
Proc. of the 33rd International Conference on Software Maintenance and
Evolution, page 11, 2017. Accepted and to be published.

[2] Marcel Bruch, Mira Mezini, and Martin Monperrus. Mining subclassing
directives to improve framework reuse. In Proc. of the 7th IEEE Working
Conference on Mining Software Repositories, pages 141–150, 2010.

[3] Marcel Bruch, Thorsten Schäfer, and Mira Mezini. FrUiT: IDE Support
for Framework Understanding. In Proc. of the OOPSLA Workshop on
Eclipse Technology eXchange, pages 55–59, 2006.

[4] Barthélémy Dagenais and Laurie Hendren. Enabling static analysis for
partial java programs. In Proc. of the 23rd ACM SIGPLAN Conference
on Object-oriented Programming Systems Languages and Applications,
pages 313–328, 2008.

[5] Barthélémy Dagenais and Harold Ossher. Automatically Locating
Framework Extension Examples. In Proc. of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
203–213, 2008.

[6] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-
Kofahi, and Tien N Nguyen. Graph-based Mining of Multiple Object
Usage Patterns. In Proc. of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, pages 383–392, 2009.

[7] Suresh Thummalapenta and Tao Xie. SpotWeb: Detecting Framework
Hotspots and Coldspots via Mining Open Source Code on the Web. In
Proc. of the 23rd IEEE/ACM International Conference on Automated
Software Engineering, pages 327–336, 2008.

[8] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining
and Recommending API Usage Patterns. In Proc. of the 23rd European
Conference on Object-Oriented Programming, pages 318–343, 2009.


	Introduction
	Related Work
	Features
	Architecture
	Miner
	Collecting framework information
	Downloading code examples
	Analyzing code examples
	Generating framework extension graphs
	Indexing framework extension graphs
	Mining graphs

	Recommender

	A Use Case Scenario
	Evaluation
	User Study
	Conclusion
	References

