Mining Duplicate Questions in Stack Overflow

Muhammad
Ahasanuzzaman
University of Dhaka

ahsan.du2010@gmail.com

Muhammad
Asaduzzaman
University of Saskatchewan
md.asad@usask.ca

Chanchal K. Roy
University of Saskatchewan

chanchal.roy@usask.ca

Kevin A. Schneider
University of Saskatchewan

kevin.schneider@usask.ca

ABSTRACT

Stack Overflow is a popular question answering site that is
focused on programming problems. Despite efforts to pre-
vent asking questions that have already been answered, the
site contains duplicate questions. This may cause develop-
ers to unnecessarily wait for a question to be answered when
it has already been asked and answered. The site currently
depends on its moderators and users with high reputation to
manually mark those questions as duplicates, which not only
results in delayed responses but also requires additional ef-
forts. In this paper, we first perform a manual investigation
to understand why users submit duplicate questions in Stack
Overflow. Based on our manual investigation we propose
a classification technique that uses a number of carefully
chosen features to identify duplicate questions. Evaluation
using a large number of questions shows that our technique
can detect duplicate questions with reasonable accuracy. We
also compare our technique with DupPredictor, a state-of-
the-art technique for detecting duplicate questions, and we
found that our proposed technique has a better recall-rate
than that technique.

CCS Concepts

eInformation systems — Social networking sites;

Keywords

Stack Overflow; duplicate questions; discriminative classifier

1. INTRODUCTION

Community-based question answering sites (CQA) are be-
coming popular due to the presence of a large volume of in-
formation that are collected through active participation of
its users. While many question answering sites facilitate dis-
cussion of a wide range of topics (such as Yahoo Answers!!),

"https://answers.yahoo.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. .. $15.00
DOIL: http://dx.doi.org/10.1145,/2901739.2901770

Stack Overflow differs in that it is dedicated to software de-
velopers. Since its inception in 2008, Stack Overflow has
become a central hub both for asking and answering ques-
tions related to programming problems. Users can vote on
questions and answers, and the vote count serves as a rough
measure for the quality of posts. Stack Overflow users can
earn reputation and badges for their valued contributions,
and these elements were introduced, in part, to encourage
user participation. Reputation also unlocks a number of
privileges to Stack Overflow users including access to site
moderation tools. This is an indication that the site is gov-
erned not only by user generated content but also by its
active users. As of January 2016, Stack Overflow had over
4.7 million registered users, more than 11 million questions,
and 17 million answers.

Stack Overflow recommends that users search previous
posts before asking a new question.? This is to avoid asking
a question that already has been asked and that may already
have been answered. Stack Overflow also suggests links to
questions whose title matches the new question. Despite
these efforts the site constantly faces duplicate questions;
questions that are asked to solve the same problem. When
two questions are duplicates of each other, one of them will
be marked as a duplicate and go through the closing pro-
cess. The other question will be marked as the master. Usu-
ally the recent question will be closed as a duplicate of the
older question because the older question typically contains
the best answer. During our manual investigation we found
that although exact duplicates are very rare, many duplicate
questions exist that are asked in different ways.

Currently Stack Overflow depends on the moderators and
users with high reputation to manually analyze and mark
duplicate questions, which is both time consuming and te-
dious work. As a result many duplicate questions remain
unidentified or are mistakenly marked as duplicates [22].
An automatic duplicate question detection system can al-
leviate these problems by recommending possible duplicates
of a question. Moderators can then focus their attention on
a smaller set of questions. Such a system can also suggest
likely duplicates as a user types a question. This may help
users to find previous posts with answers that address the
same problem and reduce waiting time to receive answers.
Duplicate detection systems can also be useful in other ap-
plications. For example, results of such a system can help
find related questions or diversify search results [32].

Although a number of studies have been performed on

http:/ /stackoverflow.com /help/asking

Stack Overflow [7, 10, 11, 14, 15, 16, 18, 21], there has been
very little research on the problem of duplicate questions.
Zhang et al. [22] recently developed a tool, called DupPre-
dictor, that can identify potential duplicates of a given ques-
tion by considering title, description, topic and tag similar-
ity. To the best of our knowledge, this is the only work
that addresses the problem of duplicate questions in Stack
Overflow. Despite the contribution of DupPredictor, we see
a gap between their work and what we can do regarding du-
plicate questions. In this paper, we build on their work to
characterize and improve detection of duplicate questions.

Towards the goal of developing an automated technique
for detecting duplicate questions, we first conduct experi-
ments to understand their characteristics. We then perform
a manual investigation to determine why developers create
duplicate questions. Based on our manual investigation, we
use the BM25 scoring function [31] and select a number of
similarity features between pairs of questions to create a dis-
criminative classifier. Together they help us suggesting po-
tential duplicates of a given question. In general, we answer
the following three research questions in this paper:

(1) Why do developers duplicate questions in Stack Over-
flow?
A proactive approach to manage duplicate questions
is to educate developers to ask questions effectively.
To shape the process we also need to understand why
developers duplicate questions. This can enable the
moderators to take the necessary actions to control
the spread of duplications.

(2) Can we develop an automated technique for detecting
duplicate questions from a machine learning perspec-
tive?

(3) How does the technique perform in comparison with
other duplicate question detection techniques?

The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes previous work related to our study.
Section 3 characterizes duplicate questions. Section 4 ex-
plains why developers duplicate questions in Stack Overflow.
We describe our proposed technique in Section 5. Section 6
presents evaluation results. We discuss the key issues related
to our study in Section 7. Section 8 summarizes the threats
to validity and Section 9 concludes the paper.

2. RELATED WORK

In this section we briefly describe previous work related
to our study.

2.1 Characterization and modelling of Stack
Overflow

A number of studies have been performed to character-
ize different aspects of Stack Overflow. This includes ques-
tion kinds [6], patterns of user interaction [7], women en-
gagement [11], analysis of code examples [9], topic distri-
bution [12], web related discussion [15], personality traits
of users [14], and distribution of developers in asking and
answering questions [13]. A number of recommendation
systems and predictive models are developed using Stack
Overflow data to answer a wide range of questions. For ex-
ample, Bacchelli et al. [10] integrate the crowd knowledge
stored in the IDE by creating an Eclipse plugin, called Se-
hawk. Ponzelli et al. [16] develop an Eclipse plugin, called

Prompter, that given a context in the IDE automatically re-
trieve related discussions from Stack Overflow. Ponzelli et
al. [19] leverages simple textual features, readability metrics
and community related aspects to improve detection of low
quality posts by reducing the size of the review queue. Cor-
rea and Sureka [21] study the characteristics of closed ques-
tions in Stack Overflow. In another study, they characterize
the deleted questions and develop a predictive model to de-
tect deleted questions at the time of question creation [18].
Chang and Pal [20] develop a recommendation model by
considering user availability, compatibility and expertise to
route questions to a groups of users, who will be more will-
ing to participate and can provide better answer. However,
none focus on the characterization and detection of duplicate
questions in Stack Overflow.

2.2 Duplicate document detection

A number of techniques have been developed for detect-
ing near-duplicate documents. For example, Broder et al.[4]
uses shingles and Manku et al. [3] uses a finger printing tech-
nique developed by Charikar [5], also known as SimHash, to
detect near duplicate web pages. Hajishirzi et al. [2] propose
a technique that represents each document as sparse k-gram
vector where weights are learned to optimize a similarity
function. This improved similarity measure can be used to
detect near duplicate documents. These techniques assume
that two near duplicate documents differ in a small portion.
However, this assumption is not correct for duplicate ques-
tions in Stack Overflow. Tao et al. [32] develop a framework
that leverages syntactical characteristics, semantic similar-
ity and contextual information to detect duplicate tweets.
Both their data set and their approach differ from ours. To
the best of our knowledge, the most relevant work to our
study is that of Zhang et al. [22]. They propose a technique,
called DupPredictor, which can identify possible duplicates
of a new question by considering its title, textual content of
the body, topic and tag similarity. Our work differs from
theirs in a number of ways. First, we use a discriminative
classification model to detect duplicate questions whereas
DupPredictor uses a combine similarity score for duplicate
detection. Second, we use a large number of features com-
pared to their technique. Finally, we study the character-
istics of duplicate questions and also investigate why they
occur. None of these approaches are present in their work.
Our data set is also considerably larger than what they used
in their study.

2.3 Duplicate bug reports

Stack Overflow questions are similar to bug reports in that
both contain unstructured data and both suffer from dupli-
cates. A number of techniques have been developed to detect
duplicate bug reports. They use vector space models [23],
execution trace information [26], probabilistic retrieval mod-
els [27], domain knowledge and context information [25] to
improve detection of duplicate bug reports. The character-
istics of a bug report is different than a question in Stack
Overflow. Bug reports contain a number of fields that pro-
vide both textual and non-textual information, but those
fields are not present in Stack Overflow questions. As well, a
bug report does not contain tags like those that are present
in Stack Overflow questions. Due to such differences it is
worthwhile to further investigate duplicate question detec-
tion in Stack Overflow.

0.030-
0.025] h
0.020- .¢ 'R
0.015f A

0.010

Ratio of duplicate Questions Over
Submitted Questions
»
2
<

0.005[i

.
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Months (over 74 months from Aug 2008 to Sep 2014)

Figure 1: Monthly ratio of duplicate questions to
total number of questions (Aug 2008-Sep 2014)

oy

3
s o o 5 B B
& & 8 8 8 2

Number of Duplicate Questions ¢
~
5

°

mm

Figure 2: Cumulative distribution of duplicate ques-
tions (Aug 2008-Sep 2014). There is a sharp rise in
duplicate questions after Sep 2012

3. CHARACTERIZATION OF DUPLICATE
QUESTIONS

This section presents different characteristics of duplicate
questions in Stack Overflow.

3.1 Data Set

We collected the Stack Overflow data dump that had been
used for the mining challenge in MSR 2015 [29]. This data
includes the publicly available history of question and an-
swer posts, tags, votes on the posts, and the reputation of
the users from August 2008 to September 2014. We down-
loaded the available eight database files which were more
than 60GB in total size.

Duplicate questions in Stack Overflow are marked with
a special marker. To collect these questions we parsed the
posts database file. We extracted those questions that were
closed as duplicate and appended ‘[Duplicate]’ to their titles.
Using this approach we identified 130,888 (0.13M) duplicate
questions for the period August 2008 to September 2014.
Next, we identified the questions to which these duplicate
questions were linked. We called these questions the masters
of the duplicated ones. We parsed the postlinks and posts
database files in order to collect the master questions. We
identified a total of 90,245 master questions.

3.2 Duplicate questions over time

We performed temporal trend analysis of duplicate ques-
tions on Stack Overflow. Figure 1 shows the ratio of dupli-
cate questions to total number of questions in each month

0.04
0.03]

0.02]

Associated with a Tag

0.01]

Ratio of Duplicate Questions to Total Questions

O+ OB XOECERT AT OAEC OG5 XETOLLDG 2
E’>1_:V9-§mgcsﬁgowgwcgggwgmgg%g%wn
EFOCCGEEBPEEE 2T Sg°2T®SeSwXpg35852
° 5 8 22 E S 588 >%28a

2 £y = & £%Pw
8 © =

Figure 3: Distribution of duplicate questions for the
most popular tags

over a 74-month period between August 2008 and September
2014. The figure shows that the number of duplicate ques-
tions is increasing over time. We observe that in Stack Over-
flow on average 4-5% questions are duplicated. This number
can be higher as many duplicate questions are likely to be
unidentified. We also notice an abrupt increase in the num-
ber of duplicate questions after September 2012. The reason
behind this is that the popularity and activity of Stack Over-
flow increased at that time and more questions were posted.
Figure 2 shows the cumulative distribution area chart for
duplicate questions over a 74-month period between August
2008 and September 2014. The chart confirms that there
is a sharp increase in duplicate questions after September
2012. Although Stack Overflow recommends that its users
search and read the questions before posting to decrease ac-
cidental duplicate questions, we observe a continuous flow
of duplicate questions to the site. We investigated possible
reasons for this and discuss our results in Section 4.

3.3 Tag based duplicate question analysis

Stack Overflow users can attach tags to questions (short
labels not more than a few words long) effectively linking
them and creating a topic-related structure. We found a to-
tal of 38,205 tags in our data set. Among these tags java,
python, csharp, jquery and himl are among the very pop-
ular. We extracted the tags used in duplicate questions to
identify which tags are most related to duplicate questions.
Of these we selected a total of thirty of the most popular
tags. Figure 3 shows the ratio of duplicate questions to total
questions for these tags. Among the various tags, the java
tag has the highest number of duplicate questions (17%);
however, the ratio of duplicate questions to total number of
questions is the highest for the string tag.

3.4 Time takes to close duplicate questions

Community users with at least a 15 reputation can flag
a question as a duplicate that needs to be reviewed by the
moderator. As well, users with a reputation of more than
3000 can close a duplicate question. We collect the time du-
ration between a question being created and then marked as
closed as a duplicate. To obtain the information, we parsed
the postlink database. Whenever, a post is marked as a du-
plicate, this event is included in the postlink database and
the field called linkTypeld is assigned the value 3 to indicate
a duplicate link. Figure 4 shows the distribution of duplicate

>30 D <=365D

>1D <=30 D

>10H <=24 H

>1H<=10H

1H
TSI A DS L L A B LA A B s e v e
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of Duplicate Questions

Figure 4: Time required to close duplicate questions

Table 1: Duplicate questions by user reputation.

Reputation | Users | Questions | Dupl. | Avg.
<100 | 43,929 320,430 | 50,384 6.36
100-1,000 | 29,469 1,258,626 | 42,170 | 29.84
1,000-10,000 | 15,362 2,617,606 | 33,653 | 77.78
>10,000 | 2,241 | 1,785,347 | 6,602 | 270.42

questions by closing time. From this time duration analysis,
we found that almost 65% of duplicate questions took more
than one day to be closed and only 29% of questions are
marked closed within ten hours. Whenever a developer asks
a question to get help in Stack Overflow, he may be on a
tight schedule and every single second is crucial to him. If he
knows that his question has already been answered then he
could save time. An automatic duplicate question detection
system can help in this regard.

3.5 Reputation of those who asked duplicate
questions

We analyzed the reputation of those who posted duplicate
questions on the Stack Overflow site. Table 1 shows how
many duplicate questions are asked by users with different
reputation categories. The last column of the table shows
on average how many questions are asked before posting
a duplicate question. Users who have the least experience
(less than 100 reputation) post the most duplicate questions
on the site. These are the users who are more interested
in getting answer without spending much time on searching
and reviewing the site. Then comes the users with minimal
experience (reputation ranges from 100 to 1,000). However,
the mid reputation users (1,000 to 10,000) post only 25% of
the duplicate questions. Users with high reputation are very
well informed and experienced enough that they post only
a few duplicate questions.

4. WHY DUPLICATE QUESTIONS ARE SUB-

MITTED?

We were interested in finding out why duplicate questions
are asked by users. Are they doing it accidentally? Are they
creating duplicates because existing answers are not helpful?
Do they search for duplicates or related questions prior to
posting a question? We plan a manual analysis of both ques-
tions and comments to find reasons for duplication. Since it
is not feasible to manually analyze all duplicate questions,
we randomly sampled a total of 600 questions. To avoid

The apk must be signed by signed with same certificate as the previous version
while uploading apk on market

| have created an application and published on android market. now i want to publish its 2nd
version. the few thing i want to make clear:

1. | have kept same package name.

2. | do not have previous keystore cause i changed the windows so keystore deleted and i do
not have backup of that keystore.

Now what i should is there any way to retrieve keystore from previous apk.

i know there is so many answers on stackoverflow some are saying possible and some are saying
impossible.

please need exact solution.

android §%§ google-play Kkeytool android-keystore 0

The apk should be signed by the same certificate as the previous version

| was developing on a computer which i no longer have access to(i have the backup of keystore

file). | had used Eclipse and created my keystore in it for my 1.0 release. Now i want to release the

2nd version and used the backup keystore in my new computer. | signed my apk with the backup
keystore in eclipse and tried to publish the updated version in google play but getting this error:
"The apk should be signed by the same certificate as the previous version”.

Can anybody help me in this.

Note : | have incremented the version name and version code in the manifest file for 2nd version.

android °

Figure 5: Not searching Stack Overflow first

bias we randomly select 100 questions from each year be-
tween 2009 and 2014, inclusive. The first two authors of
this paper manually analyzed these questions and compared
them with their master questions separately to find why du-
plicate questions were asked by users. We resolved conflicts
through discussion. Our qualitative analysis identified the
following possible reasons for question duplication. We in-
clude a number of examples of duplicate questions to sup-
port our discussion. In all figures, “M” denotes the master
question and “D” represents its duplicate.

4.1 Not searching Stack Overflow first

Many new users to Stack Overflow do not know the sin-
gle most important rule in this community — before asking
a question they should search first. When a user types a
question, Stack Overflow also offers a list of similar ques-
tions. It is also suggested to carefully review those ques-
tions before asking a question. Inexperienced new users or
those posting a question for the first time want to quickly
obtain an answer to their question without spending much
time searching. Sometimes experienced users also neglect
to search for related questions. Not searching first can lead
to duplications. For example, Fig. 5 shows an example of a
duplicate question. It is likely that the user did not search
for the question first, because a question with a similar title
already existed with answers.

4.2 Titles do not match

Sometimes the title of a duplicate question does not match
the master question. Thus, when a user searches for a simi-
lar question, they should also review the question body and
answers to identify questions that already have answers to
the same problem. Many users asked duplicate questions,
since the titles did not show a clear relation between them.
In Fig. 6, the asker of the duplicate question (‘D’) overlooked
the master question (‘M’), which could well satisfy their in-
formation needs, since the titles do not clearly indicate a
relation between them. Therefore, they asked the question
again.

Why cast null to object

| found a spot in some code I'm working on where null is castto Object asitis passedtoa
method.

Why would this be done?

| am aware of this question which deals with overloaded methods, and using the cast to determine
which version of the method to call.

But if the cast were not performed, wouldn't an overloaded method with a parameter typed as
object be chosen over any other matching version of the method if the method is called with a
null argument? So what else does the cast accomplish?

What is the difference between "(object)null" and "null" in Java?

Take a look at the following example:
class nul
public static void main (String[] args)
System.out.println (String.valueOf((Object)null));
System.out.println (String.valueOf(null));

}
}

The first println writes null but the second throws a NullPointerException .

Why is only the second line worth an exception? And what is the difference between the two
null s? Is there areal null and afake null in Java?

java nul nullpointerexception o

Figure 6: Title dissimilarity leads to duplication

How to set a timer in Java?

How to set a Timer say for 2 minutes to try to connect to a database and then exception out if
there is any issue in connecting

Animation using a timer?

I'm trying to understand how to use one some kind of basic animation. | can use threads, but |
was told by multiple people not to multi-thread in java. | think | cold do something like:

Timer t = new Timer(1@, somthing);
t.start();

X5

t.end();

That's my basic understanding of it. Can someone link a tutorial or explain how to make a time do
something every 10 seconds or longer?

java timer °

Figure 7: Task similar but domain different resulting
in a duplicate question

4.3 Domain difference despite task similarity

One of the reasons for posting duplicate questions is there
may be a difference in domain or application category. Users
may ask a question about a task that matches a previous
question but the question is for a different application or
domain category. As a result, users may overlook those ques-
tions.

Fig. 7 shows an example. Here, question “D” is the dupli-
cate of “M”. In both cases the objective is to create a timer.
In the master question the user wants to create a timer that
timeouts automatically after two minutes when exceptions
occur while establishing a connection to a database. In the
duplicate question the user wants to use a timer to create an
animation. Although the title partially matches, it appears
that the master question addresses the problem for a differ-
ent domain unless the answers are explored. As a result, it
is difficult for a user to find answers to their question.

4.4 Descriptive and difficult to comprehend

Questions having long description with or without source
code examples are difficult to read and require more time

How to disable specific control in audio player HTML5

| just want to show the audio controls but prohibits the user to drag the button because | don't
want the user to skip the song. How to make this work?

html css htmiS-audio o

How to hide position slider in HTML5 audio tag? Hide "fake" input element
inside audio element

| have built an internet radio at radio.meteor.com (code at GitHub). I'm using an HTML5 audio tag.
<audio preload id="player" controls>

<source src="{{srcUrl}}" />
</audio>

link to source

Since it's only playing streams there's no point in the slider showing up. Is there a good way to
hide the slide? Ideally not by putting another div on top to make the entire area black.

In Chrome it even seems like there's an input element inside the audio element. Isn't there a way
to hide this input element? Would be great even if it only works inside Chrome.

1 & :42_) e=mg
input 102.912px x 7.99716px

(Yes, this question is somewhat duplicate of How to disable specific control in audio player o
HTMLS - but that question is a lot less precise and this question is more useful to both people and
more likely to be found.)

Figure 8: Concise question can cause duplication

to comprehend. In addition, long descriptions of a proce-
dure or a system and code example may confuse a reader
unless reviewed carefully. They lose interest in that partic-
ular question, which could have had answers to solve the
problem.

For example, the question with id 6060998 (asked in 2010)
has already an accepted answer. However, this question
is very descriptive (73 lines) with lots of code examples.
Therefore, the asker of another question (id 11757587, asked
in 2012) overlooked the question and created a question for
a similar problem. This question is identified as a duplicate
after six hours. Although the answer could have been found
within a few seconds, the user waited almost 6 hours because
of the long description and difficulty in comprehending the
question.

4.5 Too concise to properly understand

Sometimes questioners give very concise description of
their problem without giving any supporting material or ex-
ample. Despite the lack of description or supporting mate-
rial these questions may receive answers. When other de-
velopers face the same problem they also search for ques-
tions with similar problem in Stack Overflow. But it may
be difficult for them to connect his problem with the pre-
vious question because those questions did not describe the
problem clearly. It may also be the case that the answers
are not clear, perhaps lacking a proper explanation and so
lead to the user asking the question again. Figure 8 shows
an example of this phenomenon. Here the user that asked
a duplicate question found the original question to be very
short and unclear. Thus, they asked the question again with
a better explanation, including providing some screen shots
of their problem. As the user states:

Yes, this question is somewhat duplicate of How
to disable specific control in audio player HTML5
- but that question is a lot less precise and this
question is more useful to both people and more
likely to be found.

IOException: The process cannot access the file 'file path' because it is being
used by another process
| have some code and when it executes, it throws a I0Exception , saying "The process cannot
access the file 'filename' because it is being used by another process".

What does this mean, and what can | do about it?

Of course this is not a real question; | found many questions here on SO are related to this error so
a general guidance (like this one for NullReferenceException and IndexOutOfRangeException)
may be useful.

Answer is a community wiki so feel free to edit and improve it with more common scenarios and
suggestions.

c# .net language-agnostic ioexception 0

Error in my code when delete file?
| edit pic file in path and create new image file for there.my code is:

string[] files = Directory.GetFiles(string.Concat(Server.MapPath("/"), "tmp/"));
foreach (string path in files)
{
string filename = Path.GetFileName(path);
using (Bitmap b = new Bitmap(string.Concat(Server.MapPath(*/"), “tmp/", filename)))
{

SolidBrush pixelBrush = new SolidBrush(Color.White);
Graphics g = Graphics.FromImage(b);
g.FillRectangle(Brushes.White, @, 0, 105, 40);

string outputFileName = string.Concat(Server.MapPath("/"), “tmp\\E", filename);
MemoryStream memory = new MemoryStream();

FileStream fs = new FileStream(outputFileName, FileMode.Create, FileAccess.ReadWrite
b.Save(memory, ImageFormat.Jpeg);

byte[] bytes = memory.ToArray();

fs.urite(bytes, @, bytes.Length);

fs.Close();

memory. Close();

b.Dispose();

}
File.Delete(path);

}

when delete old file error happend is:

Additional information: The process cannot access the file
'G:\project\Web ication1\WebApplication1\tmp\b381ae6.jpg' because it is being used by

another process. o

how to fix it?

Figure 9: Lack of knowledge about a problem can
lead to duplicate questions

4.6 Lack of knowledge about the problem

Some questions follow the pattern: “I am using ... and
an error occurred.” It may be the case that the problem
has already been asked and answered but the user could not
find the relevant question because they lack the knowledge
of what caused the problem. Fig. 9 provides an example.
Although the question has already been answered, the user
asking question “D” could not find the solution because they
did not know what caused the problem in their code. There-
fore, they asked the question again. The question was edited
later for clarification and marked as a duplicate.

4.7 Lack knowledge of terminology/buzzwords

Users who are either new learners or have a lack of knowl-
edge about a programming language or an API sometimes
ask questions using improper terminology. Although they
may read other questions before posting theirs, they mis-
judge many similar questions because they lack knowledge
of the terminology of that particular topic. Hence, they post
duplicate questions. For example, a questioner wants to save
objects in a file so that they can be read again, which is
known as serialization in the Java programming language.
The question has already been answered. Because of the
lack of knowledge about serialization they could not recog-
nize the post that contained the answer to their problem.

We analyzed the distribution of the 600 randomly selected
duplicate questions and categorized each of them. Although,
a number of them may fall into different categories, we select
a single category for each question. The table 2 shows the

Table 2: Reasons behind duplicate questions

Reasons Percent

Not searching Stack Overflow first 35.5
Lack of knowledge about the problem 19.0
Titles do not match 17.0

Too concise to properly understand 12.0
Domain difference despite task similarity 7.0
Lack knowledge of terminology or buzzwords 5.5
Descriptive and difficult to comprehend 4.0

percentage of the questions in each category. In most cases
new users of Stack Overflow ask questions without searching
or reviewing related questions. Thus, a number of questions
have fallen in that category. Reading only the title or even
reading questions is not enough to find posts that may con-
tain related answers. It is also required to review answers
to the posts. Automatically suggesting duplicate questions
will save the time of both question askers and moderators,
and can be a useful feature of Stack Overflow.

5. PROPOSED TECHNIQUE

In this section we describe our proposed technique, called
Dupe, for duplicate question detection. The problem of du-
plicate question detection can be viewed as a binary classi-
fication task. In a classical classification problem a model
is generated by considering a collection of features of dupli-
cate questions and their masters. Given a pair of questions
and their corresponding feature values, the model can de-
cide whether the pair of questions are duplicates or not.
The model can also tell us the level of duplication. When
a user asks a new question, we need to pair it with all of
its possible duplicate candidate questions in Stack Overflow
to decide which pair of questions are actually duplicates of
each other. Since a large number of question pairs can be
classified as duplicates, we cannot depend only on a binary
classifier. We need to sort those questions using the level of
duplication, which is a probabilistic value that can tell us
how likely the new question is a duplicate of another ques-
tion in Stack Overflow. We can then present the ranked
result to a user.

Figure 10 summarizes the phases of Dupe. The technique
consists of three different phases. In the first phase we pre-
process questions and prepare them for feature extraction.
In the second phase, we collect different features for each pair
of questions and generate the binary classification model.
The third phase is responsible for duplicate question detec-
tion using the previously trained classifier and presents a
ranked list of results. We briefly describe each phase in the
following section.

5.1 Preprocessing

After extracting each question from our data set we ap-
plied a preprocessing method consisting of the following steps:

(1) For each question, we remove stop words from both
title and body using a comprehensive list of stop words.
We then separately collect the title, body content and
tags.

(2) Users can ask question using different forms of a word,
such as organize, organizes and organizing. Moreover,
there are families of derivationally related words with

Duplicate
questlon pair

Questions Preprocessing | questions .,reate Questlo
e Palrs

/
! Duplicate Detection new question, but dont know whether it is
: previous questlon a dupllcate or not
]
! a Ne‘tN reate Ques |on
uestion
! Palrs values
i @
1
]
]
\

question pair ql&stlon pair
&® @9 @o (©Dscsssoigon ®
Collect Featuge Class|fy the Sort via duplicgtion

Non duplicate
question pair

Nz,

Feature Vector

Training via

AY

1

1

1

1

1

Feature Logistic i
Collection Regressnon Classification :
Model 1

1

1

7

__

Sorted list of questions that
are possible duplicate of the 1
new question

Duplicate ~ Non duplicate

]
]
|
1
]
questlon pairs using level H
classification model :

]

]

!

Figure 10: Classification model creation and duplicate detection via the model

similar meaning. To avoid unnecessary mismatches
we perform stemming on textual features (title and
body content) using Porter’s algorithm. Stemming re-
moves the common morphological and inflexional end-
ings from words.

(3) In Stack Overflow tags are organized in a master-synonym

relationship. A tag synonym is a tag that has exactly
the same meaning as some other tag. A tag can be a
subset of another tag that is also considered synony-
mous. We replace every occurrence of a synonym tag
with its master.

(4) The next step is to identify the duplicate questions
and link them to their master. For each question we
check the LinkTypeld of the postlinks table to deter-
mine whether the question is a duplicate. If the ques-
tion is identified as a duplicate of another question we
check the RelatedPostld to identify the master ques-
tion. Similar to the duplicate bug report detection
techniques [24], we also use the bucket data structure
to store questions. Each bucket consists of a master
and all of its duplicate questions.

5.2 Generate a discriminative classifier

5.2.1 Feature collection

In this section we describe briefly the set of features we
collected for each of questions for the task of duplicate ques-
tion detection. These features are selected based on our
manual analysis of duplicate questions. We first describe
five different features that we collect for the title of a pair of
questions. However, we also collect the same features three
more times considering title-body (title of the first question
and body of the second question), body-title and body-body.
It may be the case that titles do not match but the terms
appear in one question of a title might appear in the body
of another question or vice-versa. For tag and source code,
we only determine the cosine similarity value between a pair
of questions. The five selected features are as follows.

(1) Cosine Similarity Value: The cosine similarity is a
measure that calculates the cosine of the angle between
two documents on the vector space model. This metric
is a measurement of orientation and not magnitude, it
can be seen as a comparison between documents on a
normalized space because we are considering only the

angle between two documents represented as vectors.
The smaller the angle between the documents is, the
higher they are similar.

(2) Term Overlap: This feature determines the number
of words common between a pair of titles and has been
calculated by using the the text similarity function. If
the first title contains ¢; words and the second title
contains towords then we calculate word overlapping in
proportion to the size of t1 and t2 as follows: \Qt‘fiaiz‘\

This value is also normalized and is in the range of

|0, 1].

(3) Entity Overlap: Named Entity Recognition (NER)
locates and classifies elements in text into predefined
categories such as the organization name, expression
of times, person name, etc. If the two titles are simi-
lar they should contain the same entities. We use the
Stanford Named Entity Recognizer ® to collect the en-
tities and then determine the overlapping using the
Jaccard coefficient.

(4) Entity Type Overlap: In this case, we collect the
types of entities and determine their overlapping.

(5) WordNet Similarity: In WordNet® nouns, verbs,
adjectives and adverbs are grouped into cognitive syn-
onyms, also known as synsets, each expressing a differ-
ent concept. These synsets are interlinked with con-
ceptual semantic and lexical relations. A number of
techniques are available to determine the semantic re-
latedness over a set of terms leveraging synsets. We
use the algorithm described by Hrist and Stonge [30]
to determine semantic relatedness. Instead of imple-
menting the algorithm we use WS4J, a Java library
for calculating semantic relatedness or similarity and
it contains an implementation of that algorithm.

5.2.2 Train the classifier

To train the classifier we need to generate a training data
set. For each pair of questions we collect all the feature val-
ues as described in the previous section. These are the pre-
dictors or independent variables of our classification model.
The target or response variable has two classes. It tells

3http:/ /nlp.stanford.edu/software/ CRF-NER.shtml
“https://wordnet.princeton.edu,/

whether the pair of questions are duplicates of each other
(positive examples) or not (negative examples). To gener-
ate the positive examples we take a pair of questions in such
a way that one is the master and the other question is its
duplicate. To generate the negative examples we randomly
select pairs of questions in such a way that are not dupli-
cates of each other. The number of negative examples can
be much higher than the positive examples. To avoid bias,
we use the same number of positive and negative examples
to train our classification model. We use logistic regression
to derive our classification model. Logistic regression is a
discriminative classification model that operates on the real
valued vector input. It is also a probabilistic classifier that
given a test case generates the class predictive probability
which is the likelihood of the test case to belong to that
class. In our case for a positively predicted test case the
class probability tells the likelihood of being duplicates of
each other. We are more interested in knowing probability
values instead of the result of the binary classification.

5.3 Duplicate detection using the model

To detect whether a question, ¢ is a duplicate or not we
need to compare g with all other questions in Stack Overflow.
To do that we follow the following procedure.

e For each other question (z) in Stack Overflow we create
a pair of questions, (g,). If q is a duplicate question,
x would be the master question.

e Next, we determine the feature values of that question
pair.

e The previously trained model is now used to classify
the question pair and we collect the class probability
value that tells the duplication level.

e After collecting the probability value for all pairs of
questions, we sort them in descending order of proba-
bility values. We then recommend the top-k questions
as the possible duplicates of q.

Since there are a large number of questions in Stack Over-
flow and not all questions are related to each other, it would
be a naive approach to compare ¢ with all other questions.
For example, a question that discusses a problem or feature
of the Python programming language cannot be a duplicate
of a question related to Java. We found that tags are a good
starting point to find related posts to a question. Given a
question ¢ that uses t tags, we collect all those questions
that have one or more tags common with ¢g. Questions that
do not contain any answers cannot be a master question
in Stack Overflow. Therefore we also filter those questions
that do not have any answers. The remaining set of ques-
tions are used to create question pairs with q. We call this
set the possible duplicate candidates of q. Computing fea-
ture values for each pair of questions is a time consuming
task. To make the process faster we use an intermediate
step using the BM25 algorithm. This also helps us to filter
irrelevant questions.

BM25 is a ranking function used by many search engines
to rank documents based on their similarity to the search
query. In our case the query is created by concatenating ti-
tle, body and tags of a question. Our goal is to apply BM25
to select a small set of duplicate candidates for ¢ and then
apply the discriminative classification technique on that set.

During our manual analysis we found that not all terms
in a document are equally important. When searching for
the duplicates for a given question ¢, we need to emphasize
those terms that appear in ¢, but that do not frequently ap-
pear in other questions in Stack Overflow. Terms of g that
frequently appear in other questions do not help us to dis-
tinguish a few questions from a large collection of questions.
BM25 is a bag-of-word retrieval function that gives more
weight to the infrequent query terms over those that are
very frequent or common in the data set. Given a question
q containing terms wi, w2, ws, ..., wy, BM25 calculates the
score for another question d using the following equation:

(k4 1)c(w, d) M+1
c(w,d) + k(1 — b+ b-12) T df (w)
) avgdl
(1)
Here, c¢(w, ¢) denotes the term frequency of w in ¢ (the num-
ber of times w appears in d). df(w) refers to the question
frequency of term w (The number of questions word w ap-
pear). M is the total number of questions in our data set.
K, b are free parameters. avgdl is the average length of ques-
tions comparing with ¢ and finally, |d| denotes the length of
the other question.

Here, the parameter k controls how quickly an increase
in term frequency results in term-frequency saturation. The
default value is 1.2. Lower values result in quicker satu-
ration, and higher values result in slower saturation. The
parameter b controls how much effect field-length normal-
ization should have. A value of 0.0 disables normalization
completely, and a value of 1.0 normalizes fully. The default
is 0.75.

We investigate the effect of the BM25 transformation model
to our data set by varying the ranges of k£ and b. We find
out that setting the value £ = 0.05 and b = 0.03 gives the
best performance. For a given question g, we apply BM25
to select n questions that are possible duplicates of q. We
select the number of n in such a way so that the selected
questions always contain the duplicate question of ¢q. After
careful investigation we found that n = 10,000 is a good
value to work with.

f(q7d): Z c(w,q)

weqnNd

6. EVALUATION

This section describes the evaluation of our proposed tech-
nique (Dupe) with the only available duplicate question de-
tector for Stack Overflow, called DupPredictor.

6.1 Evaluation Metric

To evaluate the performance of the compared techniques,
we use the notion of recall rate which has been used in a
number of previous studies [22]. It can be defined as follows:

recall-rater, = %
Here, recall-ratey refers to the recall of a technique within
the top-k recommendations. The term N; refers to the total
number duplicate question in our test data. Finally, Ngk
denotes the total number of detected duplicate questions
within the top-k recommendations.

6.2 Experimental Setup

For evaluation we consider six groups of questions involv-
ing six different popular programming languages in Stack
Overflow. To create these question groups we collect all the
questions in our data set that are tagged with java, c++,

Table 3: Evaluation Results
Question Group Technique Top5 R;Z?)l_llé%) Top-20
BM25 28.33 31.14 35.12
Java Dupe 38.25 44.55 53.02
DupPredictor 30 35 41
SO Search 19.03 26.91 -
BM25 23.32 | 26.36 31.09
Dupe 37.14 40.12 49.93
C++ DupPredictor | 26 28 35
SO Search 18.81 22.40 -
BM25 26.10 | 30.18 36.09
Python Dupe 37.20 45.41 53.22
DupPredictor | 28.15 32.28 38.74
SO Search 17.21 25.41 -
BM25 35.56 | 40.84 47.53
Ruby Dupe 51.16 | 59.56 66.11
DupPredictor 33 37 39
SO Search 15.54 22.81 -
BM25 23.94 27.11 31.22
Dupe 37.14 | 39.45 50.23
Html DupPredictor | 25 28 31
SO Search 16.83 26.04 -
BM25 26.81 31.61 37.11
L. Dupe 40.61 | 47.88 56.35
Objective-c DupPredictor 26 28 31
SO Search 17.73 25.52 -

python, ruby, html and objective-c. For each group of ques-
tions we separate the duplicates from the others. To train
our proposed technique we need to create both positive and
negative examples. We use 80% of the duplicate questions
to create the positive examples in the training data. To
avoid bias we also incorporate the same number of negative
examples using randomly selected non duplicate questions.
Next, We randomly select 20% of the remaining duplicate
questions to test our technique.

6.3 Evaluation Results

Table 3 shows the results of our evaluation for each ques-
tion group. We present the results for recall-rate@5, recall-
rate@10 and recall-rate@20. From the table we can see that
our proposed technique (i.e., Dupe) performs better than
DupPredictor for all six different question groups. For ex-
ample, for the Java questions Dup Predictor achieves a recall-
rate@20 of 41% whereas Dupe achieves recall-rate@20 of
53.02%, an increase of 12.02% in recall value. We also ob-
serve an increase of 9.55% at recall-rate@10 for Dupe over
DupPredictor. For the other question groups and also for dif-
ferent recall-rates, Dupe consistently achieves better results
than DupPredictor. For example, for the C++ questions,
Dupe achieves 11.14%, 12.12% and 14.93% higher recall val-
ues at recall-rate@5, recall-rate@10 and recall-rate@20 re-
spectively. We also observe a similar result for the other
question groups. We also include results for BM25 and the
results show that applying BM25 alone does not give a good
recall-rate. Given a question, the Stack Overflow search en-
gine recommends ten relevant questions. We were interested
in how useful the technique is in detecting duplicate ques-
tions. However, we observe that the technique performs the
worst. This may be due to the fact that the target of the
technique is different from ours.

7. DISCUSSION

In this section we discuss questions related to our study.

7.1 Which features are most important?

We consider a number of features to build our discrimi-
native classification model. However, all of those features
may not contribute equally to detect duplicate questions.
To determine the impact of different features we run exper-
iments using questions that are tagged with Ruby. Table 4
shows the recall-rate@5, recall-rate@10 and recall-rate@20
when we build our discriminative classification model us-
ing different sets of features. All other settings for our
technique remain the same. From the table we can see
that Dupe achieves 24.20%, 28.90% and 33.40% accuracy at
recall-rate@5, recall-rate@10 and recall-rate@20 respectively
by considering only the question titles and when similarity
is calculated using cosine similarity. When we combine the
above feature with the term overlap between question titles,
the recall-rate drops instead of improving. Therefore, we
avoid using term overlap and use cosine similarity for the re-
maining experiments. When we only consider similarity be-
tween question bodies we do not observe much difference in
the recall-rate. Considering the tag similarity feature alone,
gives us poor performance and the recall-rate@20 drops to
26%. However, we observe improvement of recall-rate when
we combine the previous three features (title, body and tag
similarity). The recall-rate improves when we add the ti-
tle_body, body_title, and title_tag features with the previ-
ous feature set. When we combine features from steps 5
and 6, recall-rate improves by 5%, 7%, and 8% at recall-
rate@5, recall-rate@10 and recall-rate@20 respectively. The
recall-rate@20 reaches 66.10% when add the code feature.
We also observe an increase for recall-rate@5 and recall-
rate@10. Surprisingly, adding entity overlap, entity type
overlap and WordNet similarity changes the recall-rate very
insignificantly. This is most likely due to that fact the ques-
tions in Stack Overflow are very domain oriented. These
feature values are computationally expensive and we do not
recommend using them.

7.2 'Why Dupe Performs better than DupPre-
dictor

Our proposed technique outperforms DupPredictor in de-
tecting duplicate questions in top-k rank. This section ex-
plains the reasons considering question with id 23687504
(duplicate) and 375427 (master) as an example.

First, the scoring function in DupPredictor suffers from
noise and false positives. Before calculating similarity scores,
the technique gives a weight to each term common between a
pair of questions. Terms that appear frequently in questions
get a higher weight, and as such, those terms that are not
important in the current context can get a higher weight and
dominate when calculating the similarity score. DupPredic-
tor fails to consider that terms appearing in a question are
the most discriminating when they infrequently occur in the
data set, whereas the BM25 scoring function takes this into
account.

Second, the performance of DupPredictor decreases as the
data set size increases. The reason for this is that increasing
the questions or data set, also increases the possibility of
false matching. On the other hand, we select the top 10000
candidate questions using the BM25 model and then search
for the duplicate question using the discriminative classifier.

Table 4: Impact of different features on the recall-rate

No. | Different Source of Information ’(I:;:I)) 5 '(T;)I)) 10 ’(I‘%I)) 20
1 Title (Cosine Similarity) 24.20 28.90 33.40
2 Title (Term Overlap) + Title (Cosine Similarity) 17.24 20.13 23.41
3 Body (Cosine Similarity) 24.50 27.50 32.80
4 Tag (Cosine Similarity) 18.00 24.00 26.00
5 Title + body + tag 34.50 40.10 47.20
6 title_body+body_title + title_tag 40.80 47.10 55.50
7 Step-5 + Step-6 45.80 54.10 63.50
8 Step-7 + code (Dupe) 51.20 59.40 66.10
9 step 8 +(Entity Overlap + Entity Type Overlap + WordNet Similarity) 51.40 59.63 66.35

The first step reduces the number of questions to consider
and eliminates the chance of false matching.

Third, we use the source code as a separate feature to train
the classifier. Results from our study shows that adding
source code information improves the recall-rate. For ex-
ample, considering the source code, we can identify PIPE,
subprocess and readline terms that can help us to match the
duplicate question with the master question. This will not
be possible if we do not consider the source code informa-
tion.

Finally, considering only title, body, or tag similarity be-
tween a pair of questions may not be helpful to detect dupli-
cates since the terms that are common between those ques-
tions can spread in different structural regions. An impor-
tant term in the title of a duplicate question may not be
present in the title of the master, but rather may reside in
the body of that question. As a result, when we consider
the cross information the recall-rate improves. For example,
the term readline is present in the title of 23687504. The
term is missing in the title of 37542 but it is present in the
body.

7.3 Others

When we apply Dupe on the Stack Overflow data set and
manually analyze the returned result, we found that Dupe
is able to detect duplicate questions that have not yet been
identified. For example, consider the following duplicate
questions that have not yet been identified as duplicates:
(a) Adding two ruby arrays® and (b) Add two arrays into
another array.® Here, questions (a) and (b) are asking about
the same concept: how one can sum the result of two arrays
in Ruby. Question (a) is the duplicate of question (b), and it
has not yet been discovered until our proposed model identi-
fied them as duplicates. If they were identified as duplicates
early then askers would not have to wait for the answer. It
shows the importance or need of our proposed model. We
also found that given a question, the results returned by
Dupe contains very relevant questions. Thus, our technique
is not only useful to find duplicate question but can also be
used to suggest questions that are related to each other.

7.4 Runtime Performance

There are two typical ways our technique can be used.
First, the technique can be activated when a user submits a
new question to Stack Overflow or the moderators can ap-
ply the technique periodically to detect duplicate questions.

®http:/ /stackoverflow.com/questions /12584585
Shttp:/ /stackoverflow.com/questions /13078593

The time required to detect duplicate questions varies. De-
pending on the number of previous questions that need to be
searched, the value can range from 10 seconds to 30 seconds
on a single node machine for a single question.

8. THREATS TO VALIDITY

There are a number of threats to this study. First, to an-
swer why duplicate questions are submitted in Stack Over-
flow, we manually analyze a small number of questions.
Manual investigation is time consuming and it is challeng-
ing to analyze a large sample of questions. To avoid bias in
question selection we randomly select questions from differ-
ent years and each question was analyzed by two different
authors of the paper. Second, we consider questions cover-
ing six different programming languages in our evaluation.
However, these programming languages are very popular in
Stack Overflow and a large number of questions are asso-
ciated with them. For example, in our data set we found
709,994 questions that are tagged with java.

Third, we re-implement the DupPredictor since both the
data and implementation of the technique are not available.
Although we cannot guarantee that our replication of the
technique does not contain any error, we have spent a con-
siderable amount of time implementing and testing the tech-
nique to minimize the possibility of introducing errors.

9. CONCLUSION

In this paper we investigated duplicate questions in Stack
Overflow. We start with investigating the characteristics of
duplicate questions. We found that despite the continuous
effort to avoid duplicate questions, either by providing in-
structions of how to ask questions or suggesting related/du-
plicate questions at the time of writing a new question, the
number of duplicate questions is increasing steadily. We also
manually investigated questions to determine why duplicate
questions are submitted. We found that not searching Stack
Overflow first contributes the most to question duplication.
Finally, we used a discriminative model classifier together
with BM25 scoring function for detecting duplicate ques-
tions. We evaluated our technique with a large number of
questions involving different programming languages. We
found that our proposed technique, Dupe outperforms Dup-
Predictor, the only available duplicate question detector for
Stack Overflow, at recall-rate@5, recall-rate@10 and recall-
rate@20. In the future, we plan to evaluate our technique
with more questions covering various other programming
languages. We are currently working on implementing the
technique as a web service.

10. REFERENCES

[1] M. Henzinger, “Finding near-duplicate web pages: a
large-scale evaluation of algorithms”, In Proc. of SIGIR,
2006, pp. 284-291.

H. Hajishirzi, W. Yih, and A. Kolcz, “Adaptive

near-duplicate detection via similarity learning”. In

Proc. of SIGIR, 2010, pp. 419-426.

[3] G.S. Manku, A. Jain, and A. D. Sarma, “Detecting
near-duplicates for web crawling”, In Proc. of WWW,
2007, pp. 141-150.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G.
Zweig, “Syntactic Clustering of the Web”, In Proc. of
WWW, 1997, pp. 1157-1166.

[5] M. S. Charikar, “Similarity Estimation Techniques from

Rounding Algorithms”, In Proc. of STOC, 2002, pp.

380-388.

C. Treude, O. Barzilay, and M. Storey, “How do

programmers ask and answer questions on the web?”,

In Proc. of ICSE, 2011, pp. 804-807.

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and

B. Hartmann, “Design lessons from the fastest Q&A

site in the west”, In Proc. of CHI, 2011, pp. 2857-2866.

A. Pal, R. Farzan, J. A. Konstan and R. E. Kraut,

“Early detection of potential experts in question

answering communities”, In Proc. of UMAP, 2011, pp.

231-242.

[9] S. M Nasehi, J. Sillito, F. Maurer and C. Burns, “What
Makes a Good Code Example? A Study of
Programming Q&A in Stack Overflow”, In Proc. of
ICSM, 2012, pp. 25-34.

[10] A. Bacchelli, L. Ponzanelli and M. Lanza, “Harnessing
Stack Overflow for the IDE”, In Proc. of RSSE, 2012,
pp- 26-30.

[11] B. Vasilescu, A. Capiluppi and A. Serebrenik,
“Gender, representation and online participation: A
quantitative study of StackOverflow”, In Proc. of
Sociallnformatics, 2012, pp. 332-338.

[12] A. Barua, S. W. Thomas and A. E. Hassan, “What are
developers talking about? An analysis of topics and
trends in Stack Overflow”, Journal of Empirical
Software Engineering, 2014, pp. 619-654.

[13] S. Wang, D. Lo and L. Jiang, “An Empirical Study on
Developer Interactions in StackOverflow”, In Proc. of
SAC, 2013, pp. 1019-1024.

[14] B. Bazelli, A. Hindle, E. Stroulia, “On the Personality
Traits of StackOverinCow Users”, In Proc. of ICSM,
2013, pp. 460-463.

[15] K. Bajaj, K. Pattabiraman, and Ali Mesbah, “Mining
Questions Asked by Web Developers”, In Proc. of MSR,
2014, pp. 112-121.

[16] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, M.
Lanza, “Mining StackOverflow to Turn the IDE into a
Self-confident Programming Prompter”, In Proc. of
MSR, 2014, pp. 102-111.

[17] F. Calefato, F. Lanubile, M. C. Marasciulo, N.
Novielli, “Mining Successful Answers in Stack
Overflow”, In Proc. of MSR, 2015, pp. 430-433.

[18] D. Correa and A. Sureka, “Fit or Unfit: Analysis and
Prediction of ’Closed Questions’ on Stack Overflow”, In
Proc. of COSN, 2013, pp. 201-212.

[19] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza,

[2

6

7

8

“Improving Low Quality Stack Overflow Post
Detection”, In Proc. of ICSME, 2014, pp. 541-544.

[20] S. Chang and A. Pal, “Routing questions for
collaborative answering in community question
answering”, In Proc. of ASONAM, 2013, pp. 494-501.

[21] D. Correa and A. Sureka, “Chaff from the Wheat:
Characterization and Modeling of Deleted Questions on
Stack Overflow”, In Proc. of WWW, 2014, pp. 631-642.

[22] Y. Zhang, D. Lo, X. Xia, and J. Sun, “Multi-Factor
Duplicate Question Detection in Stack Overflow”,
Journal of Computer Science and Technology, 2015, pp.
981-997.

[23] P. Runeson, M. Alexandersson, and O. Nyholm,
“Detection of duplicate defect reports using natural
language processing”, in Proc. of ICSE, 2007, pp.
499-510.

[24] C. Sun, D. Lo, X. Wang, J. Jiang, and S. C. Khoo, “A
discriminative model approach for accurate duplicate
bug report retrieval”, in Proc. of ICSE, 2010, pp. 45-56.

[25] A. Alipour, A. Hindle, and E. Stroulia, “A contextual
approach towards more accurate duplicate bug report
detection”, In Proc. of MSR, 2013, pp. 183-192.

[26] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using
natural language and execution information”, In Proc.
of ICSE, 2008, pp. 461-470.

[27] C. Sun, D. Lo, S. Khoo, and J. Jiang, “Towards more
accurate retrieval of duplicate bug reports”, In Proc. of
ASE, 2011, pp. 253-262.

[28] N. Bettenburg, R. Premraj, T. Zimmermann, and S.
Kim, “Duplicate bug reports considered harmful
...really?”, In Proc. of ICSM, 2008, pp. 337-345.

[29] A. T. T. Ying, “Mining challenge 2015: Comparing
and combining different information sources on the
stack overflow data set”, In Proc. of MSR, 2015.

[30] G. Hirst and D. St-Onge, “Lexical Chains as
representation of context for the detection and
correction malapropisms”, In WordNet: An Electronic
Lexical Database (Language, Speech, and
Communication), 1998.

[31] “Introduction to Information Retrieval”,
http://www-nlp.stanford.edu/IR-book/

[32] K. Tao, F. Abel, C. Hauff, G. Houben, and U.
Gadiraju, “Groundhog Day: Near-Duplicate Detection
on Twitter”, In Proc. of WWW, 2013, pp. 1273-1283.

