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Abstract The design and maintenance of APIs (Application Programming
Interfaces) are complex tasks due to the constantly changing requirements
of their users. Despite the efforts of their designers, APIs may suffer from a
number of issues (such as incomplete or erroneous documentation, poor per-
formance, and backward incompatibility). To maintain a healthy client base,
API designers must learn these issues to fix them. Question answering sites,
such as Stack Overflow (SO), have become a popular place for discussing API
issues. These posts about API issues are invaluable to API designers, not only
because they can help to learn more about the problem but also because they
can facilitate learning the requirements of API users. However, the unstruc-
tured nature of posts and the abundance of non-issue posts make the task of
detecting SO posts concerning API issues difficult and challenging.

In this paper, we first develop a supervised learning approach using a Con-
ditional Random Field (CRF), a statistical modeling method, to identify API
issue-related sentences. We use the above information together with differ-
ent features collected from posts, the experience of users, readability metrics
and centrality measures of collaboration network to build a technique, called
CAPS, that can classify SO posts concerning API issues. In total, we consider
34 features along eight different dimensions.

Evaluation of CAPS using carefully curated SO posts on three popular API
types reveals that the technique outperforms all three baseline approaches we
consider in this study. We then conduct studies to find important features
and also evaluate the performance of the CRF-based technique for classifying
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issue sentences. Comparison with two other baseline approaches shows that
the technique has high potential. We also test the generalizability of CAPS
results, evaluate the effectiveness of different classifiers, and identify the impact
of different feature sets.

1 Introduction

Developers depend on frameworks and libraries for effective delivery of soft-
ware in a timely manner. This is supported through Application Programming
Interfaces (APIs) of those frameworks and libraries that provide access to the
implemented functionality. For example, the Java Software Development Kit
comes with thousands of components that the developers can reuse in their
projects. This saves both development time and effort [52]. API designers
must work hard to make their APIs accessible to its users. This not only en-
sures the business success of API providers/designers but also enables them to
maintain a healthy satisfied user-base. Towards this goal, API designers need
to provide development tools, documentation, and tutorials to support work-
ing with their APIs. Despite all these efforts, APIs may suffer from several
issues. These include but are not limited to documentation error (including
outdated or incomplete documentation), poor memory management, break-
ing changes that lead to backward incompatibility, and incompatibility of the
APIs with underlying operating systems or other external libraries [68]. All
these may lead to incorrect use of APIs, introduce bugs and security problems.
The rapid changes in APIs do not give the designers much time to validate
various changes and thus create confusion among its users [37]. It may also
introduce faults in designing APIs, introduce usability issues, and ultimately
leads to incorrect behavior in applications using those APIs. API designers
need to learn about these issues of using APIs to fix the problems and to find
effective ways of informing developers about various API changes.

API related issues can be learned by mining bug repositories [1], news-
groups [32] and emails of developers [6]. However, they are not the only
places to look for API issues. Nowadays, developers rely on online forums and
question-answering sites to discuss issues of APIs, ask questions and seek help
from others. While many question-answering sites (such as Yahoo Answers1

and Quora2) allow users to ask questions on any topics they are interested in,
Stack Overflow (SO) particularly focuses on programming related questions.
Thus, API issues discussed in SO are of great interest to API designers. How-
ever, extracting SO posts concerning API issues is a non-trivial task. This is
mostly due to the presence of millions of questions, many of which are not
related to API issues, and also due to the unstructured nature of the posts.
Keyword searching is not an efficient solution to the problem because of the
presence of a large number of how-to and newbie questions [60] that introduce
a lot of noise. This motivates us to investigate the problem further.

1 https://answers.yahoo.com/
2 https://www.quora.com/
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We model the problem of identifying posts discussing API issues as a binary
classification problem. Our goal is to separate these issue-related posts from
the others. Towards this goal, we develop a supervised learning technique using
Conditional Random Field (CRF) [58], that identifies API issue-sentences in
a post. We not only collect features from the output of CRF but also combine
that with different features of posts, user experience, and centrality measures
to build a logistic regression model, called CAPS. In total, we consider 34 fea-
tures along eight different dimensions. These include features collected from
title, body, CRF, answer, the experience of questioners and answerers, read-
ability metrics, centrality measures of collaboration network and additional
features collected from the question part of posts). Table 8 summarizes col-
lected features of our model.

We perform a study to determine the most important features. For all
three of our datasets, issueSentenceCount, bodyLength, and questionerMedi-
anUpVote features appear as the top-3 important features. We then conduct
a study to evaluate the effectiveness of our CRF-based issue sentence classi-
fication technique. Evaluation using the largest of our dataset and two other
baseline approaches shows that the technique has high potential. Finally, we
conduct studies to test the generalizability of CAPS results, evaluate the ef-
fectiveness of our logistic regression classifier against four other classification
algorithms and identify the impact of different sets of features.

To the best of our knowledge, the study most relevant to ours is that of
Wang et al. [65]. They develop a mechanism to distill and rank SO posts
that are likely to concern API related issues. They select those posts which
are asked by the expert users as the candidate issue-related posts. While the
technique is useful, it suffers from the problem of missing API issue-related
posts that are not asked by experts. During our manual analysis, we found
examples of several API issue-related questions that were asked by SO users
with low reputation. For example, a low reputed user posted a question3 in
August 2014 that is related to the unexpected behavior in JUnit API. After
six months, this was opened as a potential issue in the JUnit issue tracker
labeled as bug4.

Thus, our paper makes the following contributions.

(1) A supervised approach using Conditional Random Field (CRF) that can
be used to identify API issue-related sentences in a post.

(2) A classifier that is created by combining the output of a CFR-based su-
pervised learning technique, a diverse set of features from SO posts and
the experience of SO users.

(3) An evaluation of the classifier against three other baseline approaches that
consider different sources of information.

(4) An empirical study to understand which features are more important for
differentiating API issue posts from the non-issue ones.

3 http://stackoverflow.com/questions/25436505/
4 https://github.com/junit-team/junit4/issues/1083
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(5) An evaluation of our CRF-based supervised learning approach for classi-
fying API issue-related sentences.

(6) A set of studies to understand different aspects of our proposed technique.

The remainder of the paper is organized as follows. Section 2 summarizes
previous work related to our study. Section 3 provides the background of our
work. We characterize SO posts concerning API issues in Section 4. We de-
scribe our proposed technique in Section 5. Section 6 presents the evaluation
results. We identify which features are most important for the classification
task in Section 7 and Section 8 presents evaluation results for the CRF-based
technique that classifies API issue-related sentences. Key issues related to our
study are discussed in Section 9. Section 10 summarizes threats to the validity
of our work and Section 11 concludes the paper.

2 Related Work

Stack Overflow: A number of studies have been performed to characterize
different facets of Stack Overflow. This includes question quality analysis [10],
modeling difficulties of questions [31], low-quality post detection [49], topic
distribution [11], patterns of asking and answering questions [60] and the per-
sonality trait of users [12]. To facilitate developers, a number of recommen-
dation systems are developed using SO data. For example, Bacchelli et al. [7]
integrated crowd knowledge in the IDE by developing an Eclipse plugin, called
Seahawk, that links relevant discussions to the source code. Ponzanelli et al.
developed an Eclipse plugin, called Prompter, that can automatically retrieve
relevant SO discussions by giving a context in the IDE [48]. Asaduzzaman et
al. [5] conducted a qualitative study to categorize the unanswered questions.
Correa and Sureka conducted an experimental study to analyze and predict the
closed questions of SO [21]. In another study, they characterized the deleted
questions in SO and build a predictive model to detect deleted questions at
their creation time [22]. Chen et al. developed a technique to identify analogi-
cal libraries [18]. The technique combines word embedding with relational and
categorical knowledge mined from tags of SO questions and tag wikis of those
tags. However, none focuses on the classification of API issue posts in SO.
A study on SO addressed the detection of user issues and request types [55].
Their primary goal was to categorize the sentences in anomaly, how to, prop-
erty and explanation categories using discourse analysis. While they focus on
user issues, we focus on API issues in our work.

API Analysis: API learning difficulties and other issues have been in-
vestigated in many studies and the prime reasons are problematic features,
API evolution and learning obstacles. Robillard [52] conducted a study of the
obstacles faced by Microsoft developers when learning how to use APIs. Ro-
billard and Deline [53] identified that inadequate API documentation and API
structure are the top two obstacles in using APIs. Robbes et al. [51] conducted
an empirical study on the actual incidence of the API changes and API depre-
cations, causing a ripple effect in practice. The study shows that deprecation
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messages are not always helpful because of the absence of the guidelines and
unclear instructions. Ho and Li [32] analyzed 172 discussions collected from a
forum and identified a set of API learning obstacles. Zibran et al. [68] iden-
tified 22 factors as the API usability issues. Wang and Godfrey [64] analyzed
Android and IOS developer questions on SO to detect API usage obstacles.
However, the objectives of these studies are different from ours. While they
focus on problems that cause API issues, our study focuses on detecting SO
posts concerning API issues.

Wang et al. [65] developed a methodology to recommend API design-
related issues combining expert identification, topic mining and selection of
late answered questions. However, their methodology only considers questions
which are answered late and submitted by the expert users having more par-
ticipation in SO. While the technique is useful, it may miss API issue-related
posts that are not asked by expert users.

Uddin and Khomh developed an API review summarization technique
leveraging Stack Overflow posts, called Opiner [61]. Given a set of sentences
expressing opinions about an API the technique generates different kinds of
summaries of those reviews. A statistical summary of an API represents a
rating, sentiment trends and other APIs that are reviewed in the same post.
Aspect-based summaries provide opinions regarding specific attributes of an
API. Opiner also adopted off-the-shelf algorithms to generate extractive, ab-
stractive, contrastive, and topic-based summaries of API reviews. However, the
goal of Opiner is different than ours. While Opiner focuses on generating sum-
maries from API reviews, containing both positive and negative opinionated
sentences, CAPS focus on separating posts concerning API issues. Questions
that ask how to solve a task using an API or collect opinions from other de-
velopers can contain several opinionated sentences about that API. However,
CAPS removes how-to questions or questions asking opinions from developers
to identify only those posts concerning API issues.

Conditional Random Fields: Conditional Random Fields (CRFs) [58]
have been used in many natural language applications including parts-of-
speech tagging and entity linking [56]. CRFs have also been used in extracting
contexts and answers from online forums [23]. For example, Wang et al. [63]
proposed a probabilistic model in the CRFs framework to predict the replying
structure for a threaded online discussion. Raghavan et al. [50] extracted prob-
lem and resolution information from online forum discussions by formulating
the problem as a sequence labeling task and proposed a method using CRFs.
Instead of considering online forums, we consider the question answering site
Stack Overflow in our study. The problem we address in this paper is also
different from their studies.

Sentiment Analysis: Techniques related to sentiment analysis are also re-
lated to our study. The term sentiment analysis refers to the study of classifying
subjectivity (neutral or emotionally loaded) and polarity (positive, negative or
neutral) of a given text at the document or sentence level. Sentiment analysis
techniques have been adopted in software engineering research to solve various
problems and existing studies can be divided into three different categories.
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The first category focuses on understanding the impact of sentiment on
software development activities. This includes but not limited to determining
the relation between emotions and activity of developers in the open source
Gentoo project [26], determining the impact of emotions expressed on com-
mit comments [29], understand the relation between emotions, sentiment and
politeness [44], analyzing emotion in commit logs [57], and security-related
discussions in GitHub [47].

The second category focuses on understanding the challenges in sentiment
analysis. Most studies on sentiment analysis use off-the-shelf sentiment anal-
ysis tools because of their availability. However, those tools are either trained
in movie or product reviews. This raises the concern that those tools may not
be applicable in the software engineering domain. To validate this, Jongeling
et al. applied four open source tools on manually labeled data of developer
emotions [35]. Results from the study show that the output of these tools dif-
fer considerably from human evaluators and there exist disagreement between
sentiment analysis tools. They observed that the choice of sentiment analysis
tools can affect the conclusion of a study. They also failed to replicate two pre-
vious studies using different sentiment analysis tools. Thus, they pointed to
the need for sentiment analysis tools that specifically target the software engi-
neering domain. Novielli et al. found that due to the domain-specific meaning
of sentiment lexicons in technical documents (such as SO posts), SentiStrength
may produce inaccurate result [42]. In a separate study, Novielli et al. com-
pared software engineering domain-specific sentiment analysis tools with Sen-
tiStrength. They found that SentiStrength misclassifies many neutral texts as
either positive and negative [43]. This is corrected by SE specific sentiment
analysis tools and a substantial agreement exists among them.

The third category focuses on developing sentiment analysis for SE do-
mains. For example, Islam and Zibran developed SentiStrength-SE that adopted
several changes to prevent the misclassification of SentiStrength [33]. Ahmed
et al. developed a sentiment analysis technique specifically designed for code
review comments leveraging a supervised learning algorithm [3]. Calefato et
al. developed a classifier, called Senti4SD, that can perform sentiment analy-
sis of developer communications (such as Stack Overflow posts) using Support
Vector Machine algorithm [17]. However, none focus on classifying SO posts
concerning API issues. In our study, we use the Senti4SD for sentiment analysis
that is specifically designed for SO posts.

3 Background

3.1 Motivating Example

This section presents an example that shows the benefits of classifying SO
posts concerning API issue. Although there are many other examples, due to
space limitation we cannot discuss many others.
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The first link having a response that gives a workaround: print the drawable with color filter on a Canvas to create  
a bitmap... which issub-optimal but works in some cases.

I was trying to create a StateListDrawable programmatically by duplicating a Drawable and applying on one a ColorFilter 
 
The color filter did not apply. 
 
I investigated and found out that its super class, DrawableContainer, override the ColorFilter in the selectDrawable method. 
 
I think this shouldn't be the case since having a StateListDrawable with color filter is something many user would like to use. 
 
Many have reported this issue: 
http://stackoverflow.com/questions/6018602/statelistdrawable-to-switch-colorfilters 
http://stackoverflow.com/questions/16338317/applying-color-filter-in-statelistdrawable-not-working 
http://stackoverflow.com/questions/7979440/android-cloning-a-drawable-in-order-to-make-a-statelistdrawable-with-filters
 (see comments to the accepted solution)
http://stackoverflow.com/questions/13459859/uncleared-statelistdrawable-behavior-on-android

As a workaround, I did something different: extended StateListDrawable and hacked it so that I can programmatically associate  
a ColorFilter to each state, keeping a map, and change on the fly the ColorFilter onselectDrawable() method. 
 
Works for my use case. But I think the framework shouldn't clear the ColorFilter in StateListDrawable, nor should in DrawableContainer.

(a) Issue report

Android: Cloning a drawable in order to make a StateListDrawable with filters

i'm trying to make a general framework function that makes any Drawable become highlighted when  
pressed/focused/selected/etc.
 
My function takes a Drawable and returns a StateListDrawable, where the default state is the Drawable  
itself, and the state for android.R.attr.state_pressed is the same drawable, just with a filter  
applied using setColorFilter.
 
My problem is that I can't clone the drawable and make a separate instance of it with the filter applied.  
Here is what I'm trying to achieve:

If I don't clone then the filter is obviously applied to both states. I tried playing with mutate() but it doesn't help.. 
Any ideas? 
 
Update: 
The accepted answer indeed clones a drawable. It didn't help me though because my general function fails  
on a different problem. It seems that when you add a drawable to a StateList, it loses all its filters.

(b) Stack Overflow Post 

Fig. 1: A Stack Overflow post added in the Android issue tracker
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Table 1: Overview of datasets

API Date Questions Answers Sample Issues Sample Non-Issues
Android 2008 - 2017 9,94,237 14,20,973 2,000 2,000
Jenkins 2008 - 2017 22,782 26,464 250 250
Neo4j 2008 - 2017 13,434 16,215 250 250

Total 10,30,453 14,63,652 2,500 2,500

The example is about the issue of Android APIs. One of the Android de-
velopers filed an issue5 about the design problem of ControlFilter and Draw-
ableContainer class (check Figure 1). However, SO users start discussing this
issue almost two years before filing this issue by the developer in the issue
tracker. The Android developer detected this hidden issue with the help of SO
discussions and therefore, they mentioned five different SO questions related
to this issue. Other Android developers analyzed the discussions of those SO
posts and using that knowledge they found a generalized solution just after two
weeks of submitting the issue report. Eventually, this issue gets fixed almost
two and a half year after the initial discussion in SO. This example indicates
that SO posts concerning API issues can not only help API designers/devel-
opers to learn about API issues faster but can also help them to solve the
problem. However, in the myriad of SO posts, it is very difficult for the API
designers to find these issue posts. Therefore, a machine learning approach that
can automatically classify issue-related posts will be useful for API designers.

3.2 Dataset Creation

This section describes the construction of our dataset. To determine what
constitutes API-related issues, we use API usability factors discussed by Zibran
et al. [68]. Although they presented a number of usability factors, in this paper
we focus on only five of them. These are missing features, documentation,
memory management, correctness, and backward compatibility. We consider
any post related to these factors as API-related issues.

API Selection: We selected SO posts covering three different types of
APIs based on several criteria. First, we chose those APIs that are popular,
diverse in nature and have active user bases. Second, we need to identify
API issue-related posts to train a classifier. We can make our decision with
confidence for only those APIs that we are familiar with. Finally, we wanted
APIs that have different sizes, and have a varying number of SO posts. Table 1
shows the types of APIs we considered in this study. Among these API types,
the largest is the Android6. It allows developers to create applications and
games for mobile devices. Jenkins7 is a continuous integration and continuous
delivery application. Neo4j8 APIs provide access to scalable graph databases.

5 https://issuetracker.google.com/issues/36979732
6 https://developer.android.com
7 https://jenkins.io
8 https://neo4j.com
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Posts Collection: We collected the September 2017 SO data dump from
the Stack Exchange Data Dump9. This data includes the publicly available
history of question and answer posts, tags, votes on the posts, and the repu-
tation of the users from August 2008 to September 2017. We downloaded the
four files (i.e. posts, users, votes, and tags) which were more than 80GB in
total size. We considered three types of APIs (Android, Neo4j, and Jenkins)
in this study. To collect SO posts related to those APIs, we leveraged the tags
of a SO post. Each tag is a keyword or label that helps to categorize a post.
Similar to the previous study [18], we used the tag to select SO posts related
to a particular API. For the Android API, we selected posts that are tagged
as “Android”. For the Jenkins and Neo4j APIs, we also selected posts that are
tagged as “Jenkins” and “Neo4j” respectively.

Sampling and Categorization: We need to create a label dataset of issue
and non-issue posts to classify them in a supervised approach. Finding issue-
related posts was not easy because SO does not support identifying API issue-
related posts. We found that in the SO community, active users provide links
to issue trackers (we consider Android issue tracker10, Neo4j issue tracker11

and Jenkins issue tracker12) in the question or answer sections of a post.
These are candidate posts concerning API issues that need to be manually
validated. We traversed each of the SO posts and extracted the link part with
the tag “〈a〉 .. 〈/a〉”. Then we checked whether the link contained particular
issue tracker address or not. We only considered those posts for investigation
where the links pointed to issue trackers or the issue tracker pointed SO posts
in their issue description. We identified 2,237 posts for Android, 290 posts for
Neo4j, and 275 posts for Jenkins that either contains a link to the issue tracker
or the issue tracker contains links of SO posts.

Next, we conducted a manual study on these selected posts. The first two
authors of the paper performed the manual analysis independent to each other.
If we found a post related to any of the five selected API usability factors
(such as missing features, documentation, memory management, correctness,
and backward compatibility) we marked the post as an issue post.

To ensure that we selected posts based on the same criteria, we discussed
before any labeling was done. In case there was any confusion, we discussed
with each other to resolve the confusion. Otherwise, we removed the post from
our analysis. Finally, we identified 2000 posts for Android, 250 posts for Neo4j
and 250 posts for Jenkins as issue-related posts. We manually analyzed the re-
maining posts and identified a total number of 100 posts as non-issue posts. To
balance the number of issue and non-issue related posts for each of our studied
APIs, we needed to identify more non-issue related posts. Thus, for each API,
we randomly selected posts two times greater than the required number of
posts to identify non-issue posts manually. The above selected questions were

9 https://archive.org/details/stackexchange
10 https://issuetracker.google.com/issues?q=componentid:190923%2B
11 https://github.com/neo4j/neo4j/issues
12 https://issues.jenkins-ci.org/browse/JENKINS-56165?jql=project%20%3D%20JENKINS
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divided into a set of chunks and one chunk was selected for each week for
manual analysis by the first two authors. The process continued until the re-
quired number of non-issue posts were identified. We calculated the agreement
between both coders using Cohens Kappa inter-rater agreement which ranges
from -1 to +1 [19]. A Cohens Kappa value of +1 means that both coders iden-
tified the same labels for all analyzed posts. In our study, the Cohens Kappa
value is 0.91.

Finally, we selected an equal number of issue and non-issue posts. In total,
we identified 4,000 Android, 500 Neo4j and 500 Jenkins issue and non-issue
related posts. To check whether the number of labeled posts is a statistically
representative set of the selected posts, we followed a similar approach to the
previous study [45]. To achieve a confidence level of 95% with a margin of
error of 5%, the ideal sample size of Android, Neo4j, and Jenkins would be
384, 384 and 374 respectively. Thus, the size of our labeled dataset for each
API is higher than the ideal sample size. We further analyze these posts for
characterizing issue and non-issue posts in the next section.

4 Characteristic of Issue-Related SO Posts

This section analyzes the characteristics of SO posts concerning API issues.
We were interested in learning the impact of reputation in asking issue-related
questions or providing answers. We also investigated the time requires to re-
ceive an answer or an accepted answer. This is to validate whether issue-related
questions take more time to get an answer or not. We then compared the result
against non-issue related posts. We also performed a topic model analysis of
issue posts to understand the frequently discussed topics.

4.1 Reputation

In this section, we study the reputation of questioners, answerers and accepted
answerers of issue and non-issue posts. Stack Overflow only provides the latest
reputation scores of users. Thus, we calculate a proxy reputation score of a user
(either a question asker or an answerer) at time t by considering all questions
asked, all answers posted, and the number of votes casted on those posts
before the time t. This is done by following the official guideline of reputation
calculation13.

We use the Mann-Whitney U test, also known as the Wilcoxon unpaired
signed-rank test [41], for our study. The Wilcoxon unpaired signed-rank test
is a non-parametric test of which the null hypothesis is that the two input
distributions are identical [41]. The p-value computed by the Wilcoxon test
determines whether the difference between the two distributions are statisti-
cally significant. If the p-value is less than 0.05, we conclude that the difference
between the two input distributions is significant, otherwise the difference is

13 https://stackoverflow.com/help/whats-reputation

https://stackoverflow.com/help/whats-reputation
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Table 2: P-values and Cliff’s delta for reputation analysis comparing issue and
non-issue posts.

API Category of users P-value (adjusted) Cliff’s delta

Android
Questioners 2.8e−15 < 0.05 0.24 (small)
Answerers 2.8e−16 < 0.05 -0.21 (small)
Accepted Answerers 4.2e−3 < 0.05 -0.07 (small)

Neo4j
Questioners 0.356 > 0.05 -0.98 (negligible)
Answerers 5.5e−4 < 0.05 -0.21 (small)
Accepted Answerers 0.018 < 0.05 0.16 (small)

Jenkins
Questioners 0.004 < 0.05 -0.17 (small)
Answerers 1.000 > 0.05 -0.03 (negligible)
Accepted Answerers 0.004 < 0.05 -0.21 (small)

Table 3: Result of reputation analysis of Android dataset (IQ: Issue Ques-
tioner, IA: Issue Answerer, IAA: Issue Accepted Answerer, NIQ: Non-issue
Questioner, NIA: Non-issue Answerer, NIAA: Non-issue Accepted Answerer)

Reputation
IQ
(%)

IA
(%)

IAA
(%)

NIQ
(%)

NIA
(%)

NIAA
(%)

<100 26.3 35.5 18.5 55.4 22.1 13.3
100 - 1000 27.5 29.5 26.5 24.7 28.9 26.0

1000 - 10000 27.3 25.9 35.9 16.8 32.4 37.5
10000 - 50000 6.3 6.1 12.2 1.67 11.4 15.7

>50000 2.4 2.5 6.4 1.26 4.9 7.2

Table 4: Result of reputation analysis of Neo4j dataset (IQ: Issue Questioner,
IA: Issue Answerer, IAA: Issue Accepted Answerer, NIQ: Non-issue Ques-
tioner, NIA: Non-issue Answerer, NIAA: Non-issue Accepted Answerer)

Reputation
IQ
(%)

IA
(%)

IAA
(%)

NIQ
(%)

NIA
(%)

NIAA
(%)

<100 49.2 21.2 10.8 39.8 22.1 7.0
100 - 1000 28.8 26.2 23.4 32.3 26.5 26.3

1000 - 10000 18.2 37.9 45.1 21.2 37.4 45.6
10000 - 50000 3.2 13.9 19.8 3.9 10.5 17.5

>50000 1.0 0.6 0.9 1.7 3.3 3.5

not significant. To quantify the difference in the distributions of the metrics, we
also calculate the cliff’s delta (d) effect size. We interpret d using the thresh-
olds that are provided by Romano et al. [54]. Since we are performing multiple
comparisons (e.g., comparisons of questioners, answerers and accepted answer-
ers) our result can be affected by the type I error in null hypothesis testing. To
overcome this problem, we control the false discovery rate (FDR) by adjusting
the p-values based on the method proposed by Benjamini and Yekutieli [13].
We use the stats package of the R (p.adjust) to adjust the p-values.

Table 2 presents the adjusted P-values and cliff’s delta of the reputation
of questioners, answerers and accepted answerers for both issue and non-issue
posts of the studied APIs. As shown in the Table 2, we observe significant
differences between the issue and non-issue posts of Android for each category

Muhammad Asaduzzaman
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Table 5: Result of reputation analysis of Jenkins dataset (IQ: Issue Ques-
tioner, IA: Issue Answerer, IAA: Issue Accepted Answerer, NIQ: Non-issue
Questioner, NIA: Non-issue Answerer, NIAA: Non-issue Accepted Answerer)

Reputation
IQ
(%)

IA
(%)

IAA
(%)

NIQ
(%)

NIA
(%)

NIAA
(%)

<100 44.9 30.9 24.1 29.7 28.4 11.8
100 - 1000 23.5 25.5 20.4 28.1 26.4 18.9

1000 - 10000 22.7 30.9 39.4 32.8 32.8 43.7
10000 - 50000 6.9 7.4 8.7 8.2 8.2 17.2

>50000 2.4 5.0 7.3 1.3 3.8 8.3

of users. However, for the questioners in Neo4j and for the answerers in Jenkins
dataset we do not find a significant difference between issue and non-issue
posts.

We also categorize users into five different groups based on their reputation
level. Table 3, 4 and 5 show the percentage of users that ask and answer
API issue and non-issue posts for each dataset (Android, Neo4j and Jenkins).
We observe that each category of users participate in issue and non-issue
posts. For the Android dataset (see Table 3), we observe that users with high
reputation (>50,000) ask more issue questions compared to non-issue questions
(2.4% and 1.26% respectively). On the contrary, users with low reputation
(>100) ask more non-issues questions compared to issue questions (55.4% and
26.3% respectively). However, such findings cannot be generalized to Neo4j and
Jenkins dataset. In fact, low reputation users ask more in non-issue questions
compared to issue questions for both Neo4j and Jenkins dataset. We also
observe that high reputation users post more answers and accepted answers
in non-issue posts compared to issue posts for each of the studied APIs.

4.2 Time Duration

We investigate two kinds of time duration: 1) duration between the post cre-
ation and submission of the accepted answer and 2) duration between the post
creation and submission of the first answer. Figure 2 shows the results of our
analysis for all studied APIs. We observe that more non-issue questions re-
ceive first answers and accepted answers within one hour of posting questions
compared to the issue category for all studied APIs. However, we observe that
the percentage of issue questions that require more than seven days to receive
the first answer or the accepted answer is higher compared to the non-issue
category for all three datasets. In general, we observe that more than 60% of
all issue questions take more than seven days to receive the accepted answer.
Furthermore, more than 31% of all issue questions take more than seven days
to receive the first answer.
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(a) Time to receive the first answer (Andriod)
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(b) Time to receive the accepted answser (Android)
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(c) Time to receive the first answer (Neo4j)
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(d) Time to receive the accepted answser (Neo4j)
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(e) Time to receive the first answser (Jenkins)
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Fig. 2: Time requires to receive the first answer and the accepted answer for
both issue and non-issue posts. We did not find any values corresponding to
the period between 1 and 7 days for the lower four plots.

4.3 Topic Distribution Analysis

We ran the LDA model [15], an unsupervised learning method to generate
topic word distribution for our datasets of API issue posts using the tool
MALLET [39]. In this model, we need to set a user-defined parameter such as
the number of topic K that controls the granularity of the discovered topics.
Prior research shows that there is no single value of K that is appropriate in
all situations and all datasets [27,62]. In this analysis, we want to know what
are the topics that are discussed in the issue posts in the studied APIs. We aim
for topics of medium granularity so that the discovered topics cover the board
trends in our dataset. We followed an approach similar to Barua et.al. [11]
to identify the number of topics. We experimented with different values of K.

Muhammad Asaduzzaman
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Table 6: Topic distribution analysis

Topic Top Topic Words
T1 intent, image, bitmap, imageview, bitmapfactory, media, findviewbyid, bun-

dle, onactivityresult, audio
T2 response, json, jsonobject, request, url, session, jsonarray, httppost, asynctask,

progressdialog
T3 layout width, wrap cont, textview, linearlayout, fill par, relativelayout, gravi-

tion, edittext, layout grav
T4 ndk, device, debug, platform, fail, command, source, target, emul, version
T5 android, item, style, drawable, color, anim, tabhost, parent, res, layoutparam-

eter
T6 intent, context, void, android, class, string, notif, overrid, log, message
T7 com, dalvikvm, android, debug, app, thread, freed, method, error, activity-

management
T8 com, android, compile, org, gradle, class, support, google, app, error
T9 android, mediaplay, video, player, image, screen, drawable, videoview, text,

png
T10 string, null, connect, log, ioexception, printstacktrace, return, inputstream,

buffer, fileinputstream

Next, we analyzed topic words for each of those values of K. Finally, we set K
to 40 which provided the characterization that we desired. Table 6 shows the
top ten most important topics based on the topic probability distribution. The
top words of T1 are “image”, “bitmap”, “imageview”, “audio”, etc., which are
related to the image and media. T4 discusses with the emulator or version
related problem. T7 and T8 discuss with the error in debugging, thread or
compilation. Topic 9 discusses the layout and design of the Android and the
last topic is about string related discussion.

5 Proposed Technique

This section presents our proposed technique for classifying API issue posts
in Stack Overflow, called CAPS. We consider the problem as a binary classi-
fication task that requires to generate a model consisting of features of API
issue-related posts. The model is used to train a classification method that
classifies any SO posts into two classes, issue, and non-issue. To avoid bias, we
need to train the method using an equal number of issue and non-issue posts.

Our proposed technique consists of the following steps. The first step is the
Sentence Extraction and Text Transformation. The textual content of
a post is interleaved with HTML tags. Thus, we need to parse those tags to
get the textual content of the post. Besides, we also apply a text transforma-
tion mechanism for successfully extracting sentences. The second step is the
Issue Sentence Identification. We argue that issue-related sentences are
valuable for our classification task because they provide important hints for
deciding whether a post is API issue-related or not. Thus, we develop a super-
vised learning approach using Conditional Random Field (CRF), a statistical
modeling method, to classify API issue-related sentences. The third step is the
Discriminative Classifier Generation. In this step, we generate a set of

Muhammad Asaduzzaman
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<p>I am not using Fragments, still there is a reference of 
FragmentManager.
 If any body can throw some light on some 
hidden facts to avoid this type of issue:</p>
<pre><code>
java.
lang.
IllegalStateException: .
 .
 .
  
at android.
app.
FragmentManagerImpl.
checkStateLoss .
 .
 .

at android.
app.
FragmentManagerImpl .
 .
 .
(FragmentManager.
java:399) 
. . . . . </code></pre>

<p>I already tried a </p>
<pre><code>webView.destroy();
webView = null;
</code></pre>
<p>in onDestroy() of my activity, but that doesn't help much.</p>

Fig. 3: Text before removing code snippet

feature values considering textual content, structural properties, user experi-
ence, and issue sentences (if any) of posts. This leads to the development of a
classification model. The model is used to train our machine learning method.
We also describe how the trained machine learning method can be used for
classifying issue posts.

5.1 Sentence Extraction and Text Transformation

This step is responsible for extracting textual content, code examples, and
stack traces from each SO post that are interleaved with HTML tags. We
also extract sentences from SO posts which are essential to train CRFs. We
use Stanford Parser [38] to extract sentences. This parser relies on sentence
ending characters to find the boundary of a sentence. When we analyze the
HTML data, we find that many text units are not terminated by an ending
symbol or are split by structural elements (i.e., code snippets). To overcome
these, we remove the code snippets and inject punctuation as sentence ending
symbol. We extract each code examples and map them with a unique id. We
find that SO users add code examples using 〈pre〉〈code〉 . . . 〈/code〉〈/pre〉 tag.
Whenever the 〈pre〉〈code〉 part of the above tag is not ended with a sentence
ending symbol and the next word starts with an upper case letter, we inject a
period. This solves the problem of split text units due to the insertion of the
code snippet. Figure 3 shows above scenarios that are taken from SO posts.
The result is shown in Figure 4, after applying code collapsing and removing
HTML tags. Here, a period is added to indicate the end of the sentence where
it meets the above criteria.

We also separate exception code (i.e., having stack traces or log informa-
tion) from the normal code. If we find match of the content in 〈code〉〈/code〉
with a regular expression (see Figure 5), we consider them as problematic
source code (i.e., stack traces).

We remove the content and place the single word PROBLEM CODE.
Otherwise, if the content does not match the regular expression, we place the
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I  am  not  using  Fragments,  still  there  is  a  reference  of 
FragmentManager.  If  any  body  can  throw  some  light  on  some  
hidden facts to avoid this type of issue: PROBLEM_CODE.

I already tried a NORMAL_CODE in onDestroy() of my activity, but 
that doesn't help much.

Fig. 4: Text after removing code snippet

at (.)*?\\([A­Z][a­z0­9A­Z]*.java:[0­9]*

(V|D|I|W|E|F|INFO|DEBUG|WARN|FATAL|VERBOSE|ERROR)\\/(.)*?\\(

(Exception:|Error:)(.)*?\\([A­Z][a­z0­9A­Z]*\\.java:[0­9]*\\)

Fig. 5: Regular expression for extracting problematic code

word NORMAL CODE after removing the code snippet. We resort to man-
ual analysis to determine the accuracy of regular expression for extracting the
problematic code. Using a 95% confidence and a 5% confidence interval, we
observe that the statistical sample size for 3,212 code examples is 343. The
first author of the paper manually examines 350 code examples and associ-
ated posts. We find that the automatic analysis result matches the result of
the manual analysis for all test cases. This ensures that the process is very
accurate.

Besides, we apply naming convention in Java to detect API elements (i.e.
method and class name). If we find a word having the first letter of each inter-
nal word capitalized and does not contain the opening and closing brackets,
we consider them as a class. However, if the first letter is lowercase and main-
tains a camel case convention, we consider them as a method. Next, we remove
the word in the text and replace with the word CLASS or METHOD. This
generalized information help classifiers to learn better.

5.2 Issue Sentence Identification

In this step, we propose a supervised learning approach using Conditional
Random Fields (CRFs) [58] for identifying issue-related sentences. We consider
the detection of issue sentences as a sequence labeling task because of the
availability of the contextual information in a SO post. An issue-related post
should contain one or more issue-related sentences. We first introduce the
CRF model and later describe its application to classify issue and non-issue
sentences.

5.2.1 Conditional Random Field

CRFs are undirected and discriminative graphical models trained to maximize
the conditional probability [58]. They are a sequential version of the logistic
regression and a log-linear model for sequential labeling. Linear chain is a
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Table 7: Examples of issue and non-issue sentences in SO posts

PostId Sentence Label
5796611 So, should this really be considered a “bug”, since we are

officially advised to use Activity.getApplication() and yet it
doesn’t function as advertised

Issue

12803797 It seems that the Android documentation about layout aliases
is incorrect, and certainly appears inconsistent

Issue

12389115 So i added my project an AsyncTask class that i wrote a while
ago for quick testing purposes but it is causing memory leak
errors

Issue

6218143 If anyone knows of a good Android book that deals with this
please let me know

Non-issue

11014953 I want to provide user credentials from an Android applica-
tion to the API, get the user logged in, and then have all
subsequent API calls pre-authenticated

Non-issue

3264383 What is the difference between Service, Async Task & Thread Non-issue

common special-case graph structure, which corresponds to a finite state ma-
chine and is suitable for sequence labeling. A linear chain CRF compute the
probability of label sequence give an observation sequence, assuming that the
current label depends only on the previous label and observation, as given
below:

P (Y |X,W ) =
1

Z(X)

T∏
t=1

exp

{∑
k

wkfk(yt−1, yt, xt)

}
(1)

where, Y = y1, y2, y3, ..., yT denotes the label sequence andX = x1, x2, x3, ..., xT
denotes the input sequence, fk(.) denotes the kth feature function which is of-
ten binary-valued, but can be real-valued, wk denotes the weight of the kth

feature function. Z(X) is the normalization constant that makes the proba-
bility of all state sequences sum to one, defined as follows:

Z(X) =
∑
y

T∏
t=1

exp

{∑
k

wkfk(yt−1, yt, xt)

}
(2)

Inference to the most probable labeling sequence given the observation
sequence, can be efficiently calculated by dynamic programming using the
Viterbi Algorithm in the following way:

Y ∗ = argmaxY P (Y |X,W ) (3)

CRFs have many advantages over other generative models. One of the impor-
tant advantages is that a wide variety of the arbitrary number of independent
and non-independent features computed from the observation state can be
used along with observation for labeling task because there is no constraint
that feature components and observation should be independent of each other.
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5.2.2 CRF Training

To train the supervised CRF model, we first generate a manually annotated
dataset of issue and non-issue sentences. For each API, we selected 20% of the
previously identified issue and non-issue posts for sentence level annotation
with a stratified sampling approach. The first two authors of the paper man-
ually annotated each sentence of the selected posts in any of the two classes:
(1) issue sentence and (2) non-issue sentence. If we find a sentence contain-
ing information about the API issue, we label it as an issue. Otherwise, we
use the non-issue to label the sentence. Table 7 shows examples of manual
annotations at a sentence-level. We discussed before we started labeling and
resolved any conflict through discussion. In total, we manually labeled 3,364
sentences of Android posts, 744 sentences of Neo4j posts and 467 sentences of
Jenkins posts. In this annotation process, the Cohen’s Kappa agreement value
is 0.89. We use manually annotated issue sentences for training CRF. In order
to train the CRF, we select textual and structural features of sentences from
the posts. We consider the following features:

Words: In order to have better contextual information, we consider the
words of a sentence as features for CRF. We do not perform any stop word
removal or stemming operations. The reason behind this is that frequent words
can be representative of a class [6]. Furthermore, stemming operation can
hamper the contextual information. One of the advantages of CRFs is that
they easily afford the use of arbitrary features of input. Therefore, the number
of features in CRF is not fixed and it varies with the sentence containing a
different number of words.

Part-of-Speech (POS): Part-of-speech (POS) tags are extracted from
the sentence to include additional information of the grammatical structure
and category of words of a sentence. We used Stanford NLP Part-Of-Speech
Tagger [59] to extract POS information from sentences.

Sentiment Information: When we annotate the data, we find that most
of the API issue-related sentences express a negative sentiment. In our con-
ference version of the paper, we used an open source sentiment analysis tool,
called SentiWordNet 3.0 [8] to capture the sentiment information. Although
several previous studies use off-the-shelf sentiment analysis tools for analyzing
the effects of emotion in collaborative development activities [26, 29, 45, 47,
57], those tools are trained on non-technical domains. The previous study of
Novielli et al. warns that sentiment lexicons often have domain-specific mean-
ing [42]. Thus, off-the-shelf sentiment analysis tools have difficulties capturing
sentiment in the software engineering domain [35,43]. Among various software
engineering domain-specific sentiment analysis tool, Senti4SD is specifically
designed for SO posts [17]. The technique uses a combination of four differ-
ent features. The lexicon-based feature considers existing sentiment lexicons.
Keyword-based features consider the count of different categories of n-grams
and words (such as unigram, bigram, uppercase words). Semantic features con-
sider the similarity between stack overflow documents and prototype vectors
representing sentiment categories in the distributional semantic model. Evalu-
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ation with SentiStrenth using a manually curated dataset collected from Stack
Overflow posts shows that Senti4SD reduces the misclassification of neutral
documents that are classified as negative documents by the SentiStrength, the
most popular general purpose sentiment analysis tool. Thus, in this study, we
apply Senti4SD that given a sentence automatically classifies a sentence in
positive, negative and neutral sentiment category. We use the category name
as the feature value.

Normalized Position in a Post: During the manual investigation of API
issue posts, we observe cases where API issue-related sentences are expressed
in the beginning and in the middle of a post. Thus, the position of a sentence in
a SO post can be useful. We consider the position of a sentence as a heuristic
feature for the CRF model to identify problematic sentences. The possible
feature values are BEGIN, MIDDLE, and BOTTOM. For a given sentence we
determine the normalized position as follows. If the sentence is located within
top 20% lines of a post, we put the sentence in the BEGIN category. If the
sentence is located within bottom 20% lines of a post, we put the sentence in
the END category. Otherwise, the label is set to the MIDDLE category.

5.3 Discriminative Classifier Generation

5.3.1 Feature Collection

In this section, we briefly describe the set of features we collected for each
post to train the classifier. We selected these features after analyzing both
categories of posts (issue and non-issue). Each SO post contains a title, a
question, zero or more answers and comments. Thus, we consider features for
the title, the question and the set of answers associated with that question.
In SO, novice users typically ask more how-to questions and participate less
in question answering. Bajaj et al. [9] found that majority of the accepted
answers are provided by users with high reputation. Thus, the reputation of
questioners and answerers can help in detecting issue-related posts. Reputa-
tion indicates the expertise of a contributor in SO. However, we do not use the
reputation score directly to measure the experience of questioners or answer-
ers. This is because the SO data dump provides the latest reputation score
instead of specifying the score at each point in time. Thus, to calculate the
reputation of a user at the time (t) of asking a question, we consider all the
questions and answers that were posted by the user before the time t. We also
consider the number of upvotes and downvotes of those questions and answers
that were received before the time t. We also consider three other features that
can also serve as a proxy for reputation. These features fall under the expe-
rience category. We also consider two features whose values are calculated by
detecting issue sentences in question body using the CRF.

We also consider three more feature categories: readability metrics, central-
ity measure and other information of a question. The readability metrics are
used to indicate the level of difficulty for understanding a passage in English.

Muhammad Asaduzzaman
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Fig. 6: Hierarchical clustering of variables according to Spearman’s |ρ| in An-
droid, Neo4j and Jenkins dataset.

The higher the value of a readability metric, the more difficult the passage to
comprehend. Zimmerman et al. leverage readability metrics to quantify the
quality of bug reports [69]. Fan et al. found that readability metrics are a
good indicator for determining the validity of bug reports [24]. Based on the
prior studies, we also expect that readability metrics of a SO post’s description
can help us to identify API issue posts. We consider six different readability
metrics in this study. We use the python package readability to calculate read-
ability features for the question of SO posts. Inspired by the previous study
of Zanetti et al. [66], we consider seven features under the centrality measure
dimension. These features capture the degree of activity in the question an-
swering community. We expect that such information can help us identifying
API issue posts. The activity graph is constructed by considering questioners
and answerers of SO posts. Following Zanetti et al. [66], we establish a link
between a questioner and an answerer of that post if the answer is submitted
within 30 days of the question creation time. Finally, we consider five differ-
ent features for the question info feature category. These are commentCount,
viewCount, score, tags, and favoriteCount. Table 8 summarizes the eight sets
of features we selected for the classification model.

5.3.2 Correlation and Redundancy Analysis

The first step is to perform a correlation analysis. Our goal is to remove fea-
tures that are highly correlated because they could affect negatively in our
supervised classification task. We apply a variable clustering approach on each
of the datasets to construct a hierarchical structure using an R package, called
misc. Those features that are correlated appear in sub-hierarchies. For each
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Table 8: Summary of features

Dimension Feature Description

Title
titleIssueWord True if contains bug, issue, error or exception
titleWHwords True if starts with How,Where or What
titleWordCountNorm Normalized number of words in a title

Body
bodyProblemCode True if contains stacktrace or log information
bodyNegativeSentiWordRatio The ratio of negative sentiment word to the total number of

word in the post
bodyNegativeSentiWordRatio The normalized value of the number of sentences in body

CRF
issueSentenceCount Total number of issue sentences in the post body
issueSentenceRatio The ratio of issue-related sentences to total number of sen-

tences in the body

Answer
answerPresent True if there is at least one answer
durationPostAnswer The time duration between the post created and the first ac-

cepted answer posted
answerIssueWord True if contains bug, issue exception or error

Experience

questionerMedianUpVote Median of the upvote count of previous posts that are asked
by the questioner

answererMedianUpVote Median of the upvote count of previous answers posted by the
answerer

questionerExperience The total number of previous questions and answers posted
by the questioner

answererExperience The total number of previously accepted answers posted by
the answerer

questionerQualityPost The median of differences between the number of upvotes and
downvotes of previously asked questions by the questioner

Readability

readabilityFlech 206.835− 1.015 Words
Sentences

− 84.6Syllables
Words

[25]

readabilityFog 0.4 Words
Sentences

+ 40Complex Words
Words

[28]
readabilitySmogIndex 1.043×

√
Polysyllables + 3 [36]

readabilityKincaid 0.39 Words
Sentences

+ 11.8Syllables
Words

− 15.59 [34]

readabilityColanLiu 5.88Characters
Words

+ 29.6Sentences
Words

[20]
readabilitySmogValue 3 +

√
Polysyllables [36]

alphaCentrality
clusterCoefficient

Centrality pageRankCentrality These features represent questioners answerers
Measure inDegree activity in question answering community [16,24,66]

outDegree
totalDegree
lccMembership
commentCount The number of comments added to the question of the SO

post
viewCount The number of views of the SO post

Question score The score of the SO post
Info tags Number of tags associated to the question

favoriteCount The number of times a question is selected as favorite by SO
users. A question is marked as a favorite by clicking the star
beneath the vote counter

sub-hierarchy where the correlation of features is greater than 0.7, only one fea-
ture is selected toward building the classification model [40] (see Figure 6). For
example, we find issueSentenceCount and issueSentenceRatio are highly corre-
lated. Therefore, we only consider issueSentenceCount and remove the other.
We also remove readabilitySmogIndex, readabilitySmogValue, readabilityK-
incaid, answererExperience, totalDegree, inDegree, alphaCentrality, favorite-
Count, and bodySentenceNorm after performing correlation analysis.

The second step is to perform a redundancy analysis. The objective of this
step is to remove features that do not have unique signal compared to other
features. To perform the analysis we apply the redun function in the rms
package of R. We apply a similar approach that is presented by McIntosh et
al. [40] for redundancy analysis. We use the default threshold value of 0.9 for
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Fig. 7: Overview of our proposed technique (SE = Sentence Extraction, TT
= Text Transformation and FS = Feature Selection)

this analysis [40]. After performing the redundancy analysis we do not find
any redundant feature.

5.3.3 Training and Testing the Classifier

To train the classifier we need to generate a training dataset. For each post,
we collect all the feature values as described in the previous section. These
act as predictors or independent variables. The target or response variable
indicates whether the post is API issue-related or not. Thus, the response
variable has two classes. We use logistic regression to derive our classification
model. Logistic regression is a discriminative classification model that operates
on the real-valued vector input. It is also a probabilistic classifier that given a
test post generates a class probability value. This value indicates the likelihood
of the post belonging to that class.

Figure 7 explains the training and the testing phases of CAPS. We first
create a dataset containing manually classified SO posts. We select these SO
posts for the training of CAPS (Point 1).

We extract sentences and perform text transformation (Point 2). We then
determine the feature values for each post (Point 3) (check Table 8). We also
train the CRF (Point 4) classifier. We generate the title, question body, answer
and experience level features for each post (Point 6). We use all these and CRF
features to train our classification model. Point 7 shows the actual output of
the training. To avoid any bias, we use the same number of issue and non-
issue-related posts to train our classification model. To test CAPS, we also
need manually classified SO posts. For each test post, we determine the title,
question body, answer, and experience of users (Point 8). We also collect the
features for CRF (Point 9). A total of eight sets of feature values act as an
input to our classifier build in the training phase. Then, a vector for collected
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features fed into the previously trained classification model for testing. The
classifier then determines whether the test post is API issue-related post or
not. Recall that the posts in our dataset are already manually classified. We
collect the results of manual classification (Point 10) and compare the results
with that of the classifier (Point 11).

6 Evaluation

We evaluate CAPS in two different ways. First, we compare the technique with
three baseline approaches. Second, we compare the technique with the work
of Wang et al. [65]. The following section describes each of the experiment in
detail.

6.1 Comparison with Baseline Approaches

We compare CAPS with three baseline approaches that address the same
problem using different heuristics and sources of information. These are a
text classification technique, a CRF-based technique and a reputation-based
technique.

6.1.1 Description

We consider a machine learning-based text classification technique because it
has shown great promise in various problems in software engineering [6, 46].
To determine whether issue-related sentences can solely be used for classifying
issue-related posts, we include the CRF-based technique in this study. Finally,
we consider a reputation-based technique to determine the usefulness of rep-
utation for solving the classification problem. We briefly describe each of the
technique as follows.

Text Classification Technique: In our study, we consider a machine learning-
based text classification technique that automatically learns from training
data. In our case, the data comes from SO posts. Our technique is statis-
tical because we provide manually labeled API issue and non-issue-related
posts to learn each class. Automatic text classification has been found effec-
tive in various problem areas that deal with a large amount of textual content.
Examples include but are not limited to content classification of developer
emails [6], separating features from bug reports, discovering tutorial sections
that explain a given API type [46]. Typically, a text classification technique
generates features using terms appearing in documents. The documents are
modeled as vectors of features and these features values are determined from
the frequency of those terms in documents. In our case, documents are SO
posts and features are the set of words appearing in those posts.
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– Term Selection: We consider each post as a bag of words. For each post,
we collect any words by tokenizing the title, question body, and answers
including any code fragments in them. We neither perform any stop word
removal nor apply any stemming. This is because frequently appearing
words or words that derive from the same root word can representative
of a class [6]. Depending on the size of the posts, the set of words can
be very large. Instead of considering all terms as features that can lead
to overfitting problem, we consider a subset of terms as features using
frequency-based feature selection technique. The technique performs often
well when many thousands of features are considered.

– Machine Learning Method: We select the logistic regression classifier
that learns from the training data and performs the classification. Logistic
regression is a discriminative classification model that operates on the real-
valued vector input. Despite the simplicity, logistic regression has been
found effective in text classification tasks. Details of the technique can be
found elsewhere [4].

CRF-based Technique: Conditional Random Fields (CRFs) are statistical
modeling methods. We use CRF to detect API issue-related sentences. We
hypothesize that if a post contains such sentences, it is an API issue post.
To validate the hypothesis, we make the following change to allow CRF to
classify issue-related posts. We train CRF using manually validated API issue
sentences. Given a test post, we apply CRF to its textual content to detect
issue sentences. We classify the post as API issue-related if CRF identifies any
issue sentences in it.

Reputation-based Technique: We also implement another technique that
uses the reputation of SO users to classify a post into issue category. The
basic idea is that if a post question is asked or answered by a user with high
reputation, it is likely to be an issue post. We include the technique to verify
to what extent the claim can be supported by empirical study. However, it is
difficult to define the term high reputation. Thus, we determine the quartiles
of the reputation of SO users participated in the posts of target APIs and
consider anything above the third quartile value as the high reputation. For a
test post, if the reputation of the questioner or any of its answerers is greater
than the third quartile of the distribution of reputation of users, we classify
the posts into issue category.

6.1.2 Evaluation Metrics

We evaluate our results using precision, recall and F-measure which have been
used in a number of previous studies [46]. We compare our generated ground
truth with automatically generated classification. The correctly classified posts
have been considered as true positive and the post incorrectly classified as be-
longing to the class have been considered as false positive. The post incorrectly
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Table 9: Evaluation results of our proposed technique and three other baseline
approaches for classifying API issue posts. P, R and F denote precision, re-
call and F-measure respectively. The highest precision, recall and F-measures
across all techniques are highlighted in boldface.

API Technique
Issue Non-issue

P R F P R F

Android

Reputation 0.63 0.43 0.51 0.27 0.25 0.26
CRF 0.46 0.83 0.59 0.30 0.34 0.32

Text Classification 0.54 0.56 0.54 0.49 0.51 0.49
CAPS 0.95 0.71 0.81 0.76 0.95 0.84

Neo4j

Reputation 0.38 0.25 0.30 0.32 0.31 0.31
CRF 0.28 0.45 0.34 0.36 0.51 0.42

Text Classification 0.50 0.59 0.54 0.64 0.55 0.59
CAPS 0.95 0.75 0.83 0.83 0.95 0.88

Jenkins

Reputation 0.43 0.36 0.39 0.32 0.31 0.31
CRF 0.42 0.62 0.50 0.39 0.52 0.45

Text Classification 0.49 0.50 0.49 0.50 0.59 0.54
CAPS 0.92 0.71 0.80 0.73 0.92 0.81

labeled belonging to other class have been computed as the false negative.
Thus, precision, recall and F-measure can be computed as the following way:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F −measure =
2× Precision×Recall
Precision+Recall

(6)

Here, TP denotes as true positive, FP denotes as false positive and FN denotes
as false negative.

6.1.3 Experimental Setup

We use our dataset consists of SO posts that are labeled into two classes
(issue and non-issue) to perform the evaluation. We apply 10 fold stratified
cross-validation to measure the performance of each compared technique. We
split the dataset into 10 different folds of equal sizes. We use the 9 folds (90%
of data) to train the technique and the remaining fold is used to test the
performance of the technique. We repeat the process 10 times by rotating the
training and test folds. The MALLET [39] tool is used to train the CRF and we
reuse the implementation of the logistic regression available in the Weka [30].

6.1.4 Evaluation Results

Table 9 summarizes the results of our evaluation for both issue and non-issue
classes. The highest precision, recall and F-measure values for both issue and
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non-issue posts across all techniques are highlighted in boldface. The results
clearly suggest that CAPS outperforms the other three baseline approaches.
For the Android API, the reputation-based technique performs the worst.
While the precision and recall values are 0.63 and 0.43 for the issue class,
both values are dropped for the non-issue class (0.27 and 0.25 respectively).
The CRF-based technique improves the performance on the issue class but it
does not work well on the non-issue class. Since the number of non-issue posts
is expected to be much higher than the issue posts, the low recall value for
the non-issue class makes the technique ineffective. Text classification tech-
nique also does not perform well comparing other three baseline approaches.
While the precision and recall values are 0.54 and 0.56 for the issue class, for
the non-issue class the values are 0.49 and 0.51 respectively. CAPS achieves
the best precision and recall values for both classes. While the precision and
recall values are 0.95 and 0.71 for the issue class, the technique achieves 0.76
and 0.95 for non-issue class. We also observe similar results for the Neo4j and
Jenkins API. The reputation-based technique performs the worst again. The
text classification technique and the CRF-based technique rank the second
and the third positions respectively. CAPS performs the best among all four
techniques.

6.2 Comparison with the Work of Wang et al. [65]

A related work to our study is that of Wang et al. [65]. Given a collection
of SO posts, their technique recommends a ranked list of API issue-related
posts. Since the implementation is not publicly available, we re-implement the
technique. The technique first detects experts and retains only those posts that
are asked by expert users. It then detects dominant SO discussion topics and
selects only those posts for recommendation that are related to those topics.
Next, the technique filters late answered posts using a statistical quality control
technique, called control charts. The remaining posts are sorted based on a set
of metrics derived from SO data.

Their work does not focus on classifying issue-related posts and does not
utilize textual features of SO posts. Thus, it is difficult to compare CAPS
with their work. However, we follow the following approach for the purpose of
comparison. We select an equal number of issue and non-issue-related posts
(1,000 in total) of Android API from our dataset for training CAPS. The
remaining 1,000 issue posts of Android API are used for testing. We would
like to find how many of these issue-related posts are detected by the technique
of Wang et al.. We fed all the Android-related posts except those we use for
training CAPS as input to the technique. After filtering, the technique selects
91,234 posts out of the 994,237 Android posts. This selected set of posts only
contain 312 issue-related posts out of the 1,000 we selected for testing. Thus,
the technique achieves 31.2% accuracy. However, CAPS correctly classifies 750
issue-related posts out of the 1,000 and achieves 75% accuracy.
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6.3 Comparison with Opiner

Another study related to ours is the work of Uddin and Khomh [61]. They
developed a tool, called Opiner, that summarizes API reviews collected from
Stack Overflow posts. Although related the goal of Opiner is different from
CAPS. For example, CAPS focuses on removing a large number of how-to
and newbie questions that make it difficult to locate posts concerning API
issues. However, Opiner focuses on collecting and summarizing opinions about
APIs. Those how-to and newbie questions can be useful to Opiner for opinion
mining. Despite the differences, we were interested in learning whether Opiner
can be used to identify posts concerning API issues. Thus, we make a set of
changes in Opiner to make the comparison possible.

Opiner categorizes sentences into a set of aspect categories leveraging two
supervised algorithms. To train Opiner, we reuse the dataset developed by Ud-
din and Khomh that consists of 4,594 manually labeled sentences from 1,338
Stack Overflow posts into aspect categories. Then, we collected sentences from
our test dataset and give that to Opiner to classify those sentences into as-
pect categories. Opiner uses a combination of SentiStrength and the Sentiment
Orientation algorithm to determine the polarity of those aspect-oriented sen-
tences. We then apply heuristics to classify posts into issue and non-issue
categories leveraging negative sentiment aspect-oriented sentences. We do this
in two different way. If a SO post contains at least one negative sentiment
aspect-oriented sentence, we categorize the post into issue category. Other-
wise, the post is classified into non-issue category. We refer to this as the basic
approach. The other approach considers majority voting where the polarity of
the post dictates by the polarity of the largest number of sentences. In case of
a tie which can happen when a post has an equal number of positive and neg-
ative sentiment sentences, we break the tie considering the sum of sentiment
polarity scores of sentences.

Table 10 compares the evaluation result of the modified Opiner with CAPS
for all three API types. The highest precision, recall and F-measure values for
both issue and non-issue posts across all techniques are highlighted in bold-
face. Opiner-E:Basic refers to the modified Opiner that implements the basic
approach discussed above in classifying SO posts into issue or non-issue cat-
egories. Opiner-E:Majority Voting implements the majority voting approach
in the classification. Results from the study clearly indicate that CAPS per-
forms considerably better than Opiner-E. This is most likely due to the reason
that Opiner is not designed for removing how-to and newbie questions. Fur-
thermore, CAPS also considers a large number of features that affects the
performance considerably.

7 Importance of Features for Classifying API Issue Posts

This section investigates which features are most important for classifying API
issue posts. Since different projects have different characteristics, the impor-
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Table 10: Comparison with the modified Opiner for classifying API issue posts.
The highest precision, recall and F-measures across all techniques are high-
lighted in boldface.

API Technique N-gram
Issue Non-Issue

P R F P R F

Android

Opiner-E: Basic
U 0.61 0.43 0.60 0.61 0.77 0.68
B 0.59 0.48 0.53 0.62 0.72 0.67
T 0.59 0.48 0.53 0.62 0.72 0.66

Opiner-E: Majority Voting
U 0.59 0.64 0.61 0.67 0.62 0.64
B 0.57 0.71 0.64 0.70 0.51 0.60
T 0.57 0.73 0.64 0.70 0.52 0.60

CAPS 0.95 0.71 0.81 0.76 0.95 0.84

Neo4j

Oopiner-E: Basic
U 0.57 0.56 0.56 0.64 0.66 0.65
B 0.62 0.40 0.48 0.62 0.80 0.70
T 0.55 0.65 0.60 0.66 0.56 0.61

Oopiner-E: Majority Voting
U 0.57 0.56 0.56 0.64 0.66 0.65
B 0.56 0.65 0.60 0.66 0.57 0.64
T 0.64 0.40 0.49 0.62 0.82 0.71

CAPS 0.95 0.75 0.83 0.83 0.95 0.88

Jenkins

Oopiner-E: Basic
U 61.3 0.40 0.48 0.56 0.75 0.64
B 0.59 0.50 0.54 0.57 0.67 0.62
T 0.56 0.68 0.61 0.60 0.47 0.53

Oopiner-E: Majority Voting
U 0.58 0.57 0.58 0.59 0.59 0.59
B 0.56 0.68 0.61 0.60 0.47 0.53
T 0.56 0.68 0.61 0.60 0.47 0.53

CAPS 0.92 0.71 0.80 0.73 0.92 0.81

tance of features that distinguish API issue posts from the non-issue ones can
be quite different. Thus, we conduct the study for each dataset.

The logistic regression algorithm that we used in our CAPS model is typ-
ically used for modeling linear relationship with the response variable. How-
ever, some factors potentially share non-linear relationships with the response
variable. Thus, we use restricted cubic splines to add the non-linear terms of
factors into the model by following the prior study of McIntosh et al. [40].

Table 11 shows the effect of each factor to classify API issue related posts.
We find that issueSentenceCount feature is ranked as the most important
factor in each of our studied datasets. As shown in Table 11, we observe that
issueSentenceCount has the highest Wald χ2 value with statistical significance.
We also observe that CRF feature shares a non-linear relationship with the
response variable as the non-linear term of issueSentenceCount provides a sta-
tistical significance and a large explanatory power to the model. However, we
observe that in most other cases, the non-linear term does not provide much
explanatory power to the model. The second most important feature for our
model is bodyLength. The relationship between the bodyLength and the re-
sponse variable is almost linear since the non-linear term does not provide
explanatory power to the model. We also find three features from Experi-
ence (questionerMedianUpVote), Answer (durationPostAnswer) and Network
Centrality (outDegree) which show a statistical significance in classifying API
issue posts.
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Table 11: An overview of results of logistic regression models. The overall and
non-linear (NL) Wald χ2 of each factor is shown as the proportion in relation
to the total Wald χ2 of the model. The top factors or features for each dataset
are shown in bold and italic. (*) p < 0.05; (**) p < 0.01; (***) p < 0.001. (+)
Discarded during factor selection; (-) Non-linear term not allocated.

Factor Android Neo4j Jenkins

AUC 0.97 0.94 0.93
AUC optimism 0.0036 0.004 0.04

Wald χ2 705 98 87
Budget of degree of freedom 314 28 30
Degree of freedom spent 32 31 32

Overall Non- Overall Non- Overall Non-
linear linear linear

Title Feature

titleWHWords D.F 1 - 1 - 1 -

χ2 28.58*** - 5.43** - 9.58** -

titleIssueWord D.F 1 - 1 - 1 -

χ2 3.62* - 4.72* - 3.63* -

titleWordCountNorm D.F 1 - 1 - 1 -

χ2 16.39** - 3.58 - 5.31* -

Body Feature

bodyProblemCode D.F 1 - 1 - 1 -

χ2 0.26 - 1.62 - 3.44 -

bodyNegativeSentiWordRatio D.F 1 - 1 - 1 -

χ2 10.47** - 6.33* - 3.90* -

bodyLength D.F 4 3 4 3 4 3

χ2 167.38*** 9.95* 14.27*** 0.29* 16.01*** 0.41

CRF Feature

issueSentenceCount D.F 2 1 2 1 3 2

χ2 391.21*** 35.06*** 40.12*** 0.41 42.25*** 0.01

Answerer Feature

durationPostAnswer D.F 4 3 4 3 4 3

χ2 61.16*** 11.03 3.08* 0.54 5.11* 0.51

answerPresent D.F 1 - 1 - 1 -

χ2 0 - 0 - 0 -

answerIssueWord D.F 1 - 1 - 1 -

χ2 0 - 0 - 0 -

answerLength D.F 1 - 1 - 1 -

χ2 0.05* - 5.48* - 3.25 -

Expertise Feature

questionerMedianUpVote D.F 4 3 3 2 3 2

χ2 96.97*** 3.44* 1.52* 0.8 5.21** 3.22

answererMedianUpVote D.F 1 - 1 - 1 -

χ2 0.73 - 1.25 - 0.08 -

answererExperience D.F 1 - 1 - 1 -

χ2 7.24** - 1.39* - 1.11 -

questionerExperience D.F 1 - 1 - 1 -

χ2 5.34* - 0.44 - 0.24 -

questionerQualityPost D.F 1 - 1 - 1 -

χ2 0.34 - 0.32 - 0.27 -

Readability Feature

readabilityFog D.F 1 - 1 - 1 -

χ2 10.88* - 0.56* - 1.02* -

readabilityColanLiu D.F 1 - 1 - 1 -

χ2 5.33* - 0 - 0.21 -

readabilityFlex D.F 1 - 1 - 1 -

χ2 0.94 - 0.05 - 0.28 -

Network Centrality Feature

clusterCoefficient D.F 1 - 1 - 1 -

χ2 0.75 - 0.33 - 0.11 -

pageRankCentrality D.F 1 - 1 - 1 -

χ2 0.78 - 2.02 - 0.65 -

outDegree D.F 1 - 1 - 1 -

χ2 71.58*** - 3.58* - 1.21* -

lccMembership D.F 1 - 1 - 1 -

χ2 0 - 0 - 0 -

Question Feature

tags D.F 1 - 1 - 1 -

χ2 3.27* - 3.45 - 3.33 -

numberOfcomments D.F 1 - 1 - 1 -

χ2 5.15 - 0.69 - 0.54 -

Score D.F 1 - 1 - 1 -

χ2 3.75** - 6.92** 5.67** -
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Fig. 8: The estimated probability when the values of issueSentenceCount,
durationPostAnswer, bodyLength, questionerMedianUpVote and outDegree
change for Android dataset. Y axis is the probability of classifying issue post.
X axis is the value of factors except for the durationPostAnswer where we con-
sider the lograthim value of the factor. The gray area shows the 95% confidence
interval
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Fig. 9: The estimated probability when the values of issueSentenceCount,
durationPostAnswer, bodyLength, questionerMedianUpVote and outDegree
change for Neo4j dataset. Y axis is the probability of classifying issue post. X
axis is the value of factors except for the durationPostAnswer where we con-
sider the lograthim value of the factor. The gray area shows the 95% confidence
interval

To further understand how a factor affects the value of the response vari-
able, we plot the estimated likelihood of classifying API issue posts. We use
the Predict function in the rms R package to plot the estimated likelihood.
Figure 8, 9, 10 shows the relationship between important features and the
response variable for all three datasets. We observe that the probability of
classifying issue posts increases exponentially when the issueSentenceCount is
greater than two across all three datasets.

We find that the probability of classifying API issue posts increases with
the increase of bodyLength. This result suggests that an API issue post is likely
to be more lengthy and descriptive than the non-issue posts. We observe an
opposite relationship between the outDegree and the probability of classifying
issue post. One possible explanation to this phenomenon is that API issue posts
are difficult to answer and questioners receive a small number of answers. We
can observe that the probability of classifying API issue posts increases with
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Fig. 10: The estimated probability when the values of issueSentenceCount,
durationPostAnswer, bodyLength, questionerMedianUpVote and outDegree
change for Jenkins dataset. Y axis is the probability of classifying issue post.
X axis is the value of factors except for the durationPostAnswer where we con-
sider the lograthim value of the factor. The gray area shows the 95% confidence
interval

the increase of durationPostAnswer. This indicates that the API issue posts
require more time to receive the first answer. Although we observe a similar
pattern in Android for questionerMedianUpVote, we find opposite pattern in
Neo4j and Jenkins.

8 Evaluating CRF-based Supervised Learning Technique

Our discriminative classifier for classifying API issue posts depends on a su-
pervised learning technique for classifying issue-related sentences. During our
empirical study, we found that the number of issue sentences plays an impor-
tant role in classifying API issue posts. Thus, the performance of our classifier
also depends on the accuracy of classifying issue-related sentences. However,
we have not discussed yet the accuracy of our CRF-based supervised learning
technique for issue sentence classification.

To train the CRF-based issue sentence classifier, we consider five differ-
ent features. These are words that appear in a sentence, part-of-speech tags
that are extracted from each sentence to capture grammatical structure and
category of words, the level of sentiment expressed by a sentence and the nor-
malized position of a sentence in a post. We run the Senti4SD tool to identify
the sentiment of a sentence in one of the three categories (i.e., positive, neg-
ative and neutral). The normalized position of a sentence can be one of the
following three categories: BEGIN, MIDDLE, and END. We not only report
the performance of the issue sentence classifier but also compare the effective-
ness of different categories of features. We also compare the classifier with two
other baseline approaches. Our goal is to understand whether any of these
baseline approaches can replace our CRF-based issue sentence classifier. Fi-
nally, we study any impact of pre-processing operation such as stemming and
stop word removal on the issue sentence classifier.
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Table 12: Comparison of CRF-based issue sentence classifier with two other
baseline approaches using Android dataset. P, R and F denote precision, re-
call and F-measures respectively. The highest precision, recall and F-measures
across all techniques are highlighted in boldface.

Techniques
Issue Sentences Non-issue Sentences
P R F P R F

ISC 0.70 0.85 0.70 0.70 0.65 0.69
Text Classification 0.60 0.52 0.55 0.50 0.60 0.54
Sentiment Analysis 0.37 0.57 0.45 0.55 0.59 0.57

8.1 Experimental Setup

We manually annotated sentences of SO posts in all of our three datasets in
either issue or non-issue category. We use that annotated data to evaluate
the effectiveness of our issue sentence classifier. Here, we report results for the
Android dataset because it contains the largest number of SO posts. We use the
same 10 fold stratified cross-validation technique to measure the performance.
We also use the same metrics that we use for evaluating CAPS (i.e., precision,
recall, and F-measure). In this experiment, the correctly classified sentences
are considered as the true positives and the incorrectly classified sentences are
considered as the false negatives.

8.2 Evaluation Results

We consider a text classification technique and a sentiment analysis technique
as baseline approaches to compare with our CRF-based issue sentence classi-
fier. Our text classification technique is similar to the one we compared with
CAPS. Since our objective is to classifying sentences instead of documents,
we use the terms appear in sentences for both training and testing. We also
use the same logistic regression technique to classify sentences. Recall that we
categorize sentences in one of the three sentiment categories using Senti4SD
tool. We use that information to build our sentiment analysis technique. We
hypothesize that if the sentiment of the sentence is negative, it could be an
issue sentence. This is based on the observation that issue-related sentences
may contain problem description, difficulties of using APIs and frustration
of developers, thus express negative sentiments. Previous studies also use the
sentiment information for identifying problematic API features [67]. These
motivate us to understand the usefulness of sentiment for solving our classi-
fication problem. Thus, we include the sentiment analysis technique in this
experiment.

Table 12 summarizes the results of our evaluation for both issue and non-
issue sentence categories. The highest precision, recall and F-measure values
for both issue and non-issue sentences across all techniques are highlighted
in boldface. The results indicate that our CRF-based issue sentence classifier
outperforms two other baseline approaches. The sentiment analysis technique
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Table 13: Comparison of difference sources of information for issue sentence
classification. The highest precision, recall and F-measures across all feature
groups are highlighted in boldface.

No Feature Group
Issue

Sentence
Non-issue
sentence

P R F P R F
1 Words 0.60 0.30 0.40 0.55 0.80 0.65
2 Words + Sentiment 0.53 0.39 0.45 0.56 0.68 0.61
3 Words + Position 0.63 0.41 0.50 0.58 0.85 0.69
4 Words + Sentiment + Position 0.52 0.39 0.44 0.55 0.67 0.60
5 Parts-of-Speech + Sentiment + Position 0.45 0.57 0.51 0.50 0.40 0.44

6
Words + Parts-of-Speech + Sentiment +

Position
0.70 0.85 0.70 0.70 0.65 0.69

also does not show good results. This could be due to the fact that off-the-
shelf sentiment analysis techniques are not suited to our problem. The text
classification technique improves the performance of issue sentences. While the
precision and recall values for the issue sentence category are 0.60 and 0.52
respectively, the values are 0.50 and 0.60 for the non-issue sentence category.
Our CRF-based issue sentence classifier considerably improves the recall for
the issue sentence category (achieves more than 30% improvement) and preci-
sion of non-issue sentence category (achieves 20% improvement). This is due
to considering different categories of features.

8.3 Impact of Feature Groups

Our CRF-based issue sentence classifier uses four different categories of fea-
tures. We are interested to learn the impact of different feature groups. To-
wards this goal, we conduct our issue sentence classification experiment for
the Android dataset again. However, this time we run the experiment consid-
ering different groups of features. All other settings of the technique remain
unchanged. Table 13 shows the performance of CRF-based issue sentence clas-
sifier for a different combination of feature groups. The highest precision, recall
and F-measure values for both issue and non-issue sentences across all feature
groups are highlighted in boldface. When we only consider the Words feature,
the precision and recall values for the issue sentence category reach to 0.60 and
0.30 respectively. For the non-issue category, the precision and recall values
are 0.55 and 0.80 respectively. One important observation is that the recall
values for the issue sentence category are very poor.

Adding the position with Words results in better performance than adding
the sentiment with Words. When we combine both position and sentiment
features with words, the precision and recall values for the issue sentence
category improves (reach to 0.65 and 0.41 respectively). However, for the non-
issue precision remains the same but recall drops to 0.67. Adding parts-of-
speech information to sentiment and position information does lead to better
results. However, when we combine all four feature sets, the technique performs
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Table 14: Comparison of CRF-based issue sentence classifier after stemming
and stop word removal. P, R and F denote precision, recall and F-measures
respectively. The highest precision, recall and F-measures across all techniques
are highlighted in boldface.

Techniques
Issue Sentences Non-issue Sentences
P R F P R F

ISC without stemming and stop word removal 0.70 0.85 0.70 0.70 0.65 0.69
ISC with stemming operation 0.61 0.44 0.51 0.62 0.78 0.69
ISC with stop word removal 0.58 0.69 0.63 0.58 0.59 0.66

the best. The precision and recall values for the issue-sentence category reach
to 0.70 and 0.85. For the non-issue sentence category, those values reach to
0.70 and 0.65 respectively. This indicates that we need to consider all four
information sources for classifying issue sentences.

8.4 Impact of Stemming and Stop Word Removal

Recall that we did not apply stemming and stop-word removal for CAPS. In
this section, we study whether stemming and stop word removal have any
impact on the performance of issue sentence classification. First, we generate
the training and the test dataset after performing stemming and removing stop
word. Then, we run our issue sentence classifier to evaluate the performance
of the newly pre-processed dataset. Table 14 presents the performance of the
issue sentence classifier on the dataset after performing stemming and stop
word removal operations. The highest precision, recall and F-measure values
for both issue and non-issue sentences across all three compared techniques
are highlighted in boldface. As shown in Table 14, the performance of issue
sentence classifier decreases when we perform stemming and stop word removal
on the dataset.

Prior research shows that performing the stemming operation on the posts
of question-answering sites may lose semantic information which results in poor
performance of text classification [14]. In general, stemming and stop word
removal operations negatively impact the performance of the issue sentence
classifier in our case too. Thus, we did not incorporate those operations in
CAPS.

9 Discussion

This section discusses a set of questions related to our study.

9.1 Testing Generalizability of the CAPS Results

SO posts that discuss issues of different APIs may use different words and
jargon. This is because these APIs are quite different from each other. We
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Table 15: Evaluation results of CAPS in classifying unseen APIs

Unseen API Class Precision Recall F-measure

Android
Issue 0.83 0.74 0.78

Non-issue 0.77 0.85 0.80

Neo4j
Issue 0.92 0.86 0.89

Non-issue 0.84 0.91 0.87

Jenkins
Issue 0.90 0.68 0.77

Non-issue 0.69 0.90 0.78

Table 16: Comparison of different classifiers for classifying SO issue posts. P, R
and F denote precision, recall and F-measure values respectively. The highest
precision, recall and F-measures across all APIs are highlighted in boldface.

API Classifier
Issue Non-Issue

P R F P R F

Android

Logistic Regression 0.91 0.94 0.92 0.94 0.92 0.92
Naive Bayes 0.91 0.36 0.52 0.64 0.61 0.74

SVM 0.87 0.93 0.89 0.93 0.89 0.89
Decision Tree 0.90 0.92 0.91 0.92 0.91 0.91

Random Forest 0.92 0.94 0.93 0.94 0.91 0.93

Neo4j

Logistic Regression 0.88 0.88 0.88 0.91 0.91 0.91
Naive Bayes 0.72 0.46 0.56 0.67 0.86 0.75

SVM 0.81 0.68 0.74 0.77 0.88 0.82
Decision Tree 0.88 0.87 0.87 0.90 0.91 0.90

Random Forest 0.87 0.88 0.87 0.91 0.89 0.90

Jenkins

Logistic Regression 0.85 0.90 0.87 0.96 0.84 0.88
Naive Bayes 0.78 0.81 0.79 0.81 0.79 0.80

SVM 0.81 0.90 0.85 0.96 0.90 0.84
Decision Tree 0.86 0.88 0.87 0.89 0.87 0.88

Random Forest 0.92 0.85 0.88 0.87 0.93 0.90

are interested to know whether it is possible to train CAPS using SO posts
discussing issues of one API and then classify issue posts of another API. To
do that we use three-fold cross-validation where the folds are not randomly
created. Instead, we create one fold for each API in our datasets. We use any
two folds to train the classifier and then test using the third fold. Table 15
reports the results of our experiment. We use the term unseen API to refer
to the API under testing. The results indicate that the performance of the
CAPS drops, which is not surprising. However, the results are not affected
much which is an indication that CAPS can be used to classify issue-related
posts of unseen APIs.

9.2 Impact of Different Classifiers

In this section, we are interested to learn the impact of different classifiers. Re-
call that we use the logistic regression to build the classifier to separate API
issue posts from non-issue ones. It may be the case that a different classifier
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provides a better result than the current one. Toward this goal, we compare
the logistic regression with four other classifiers (i.e., naive Bayes, SVM, ran-
dom forest and decision tree). Naive Bayes classifiers are based on the Bayes
theorem that assumes features are independent of each other. SVMs are super-
vised learning techniques that construct a hyperplane in a high-dimensional
space for classification tasks. A decision tree is a tree-like structure where in-
ternal nodes represent possible decisions based on conditions and leaf nodes
represent class labels. Finally, random forests use multiple learning algorithms
(such as decision trees) to provide better predictive performance.

We apply the default implementation in Weka for these classification algo-
rithms. For the decision tree, we use the J48 class that implements the C4.5
decision tree algorithm. For the SVM, we use the SMO class that implements a
sequential minimal optimization algorithm for training a support vector classi-
fier. Table 16 shows the result for all five classifiers for all three datasets. The
highest precision, recall and F-measure values for both issue and non-issue
posts across all five classifiers are highlighted in boldface. Results from the
study suggest that the naive Bayes classifier did not perform well. We observe
that both random forest and decision tree classifiers show similar results to
the logistic regression. However, both training and testing are faster for the
logistic regression. While SVM shows good result for Android and Jenkins, the
performance drops for the Neo4j dataset. These justify our selection of logistic
regression for the SO issue posts classification.

9.3 Effects of Different Sets of Features

This section investigates how different feature sets impact the performance of
CAPS. Recall that our classification model considers eight different sets of care-
fully selected features. Five of them were first proposed in our SANER’2018
paper [2] (title, body, answer, asker/answerer experience, and CRF) and three
of them are added in this extended version of the work (readability, network
centrality, and question info).

To understand the importance of these feature sets, we run experiments on
our largest dataset, called Android. Table 17 shows the overall performance
of CAPS when we use different sets of features. The highest precision, recall
and F-measure values for both issue and non-issue posts across all feature
groups are highlighted in boldface. All other settings of our technique remain
unchanged. From table 17, we can see that the precision and recall values of
CAPS reach to 0.60 and 0.56 for the issue class when we only use the title
feature set. Among eight feature sets, the precision of issue class reaches to the
highest value for the CRF feature set. However, the recall for the CRF is only
0.57 which is much lower than the precision value we obtain. CRF also receives
the highest F-measure for both issue and non-issue classes. This indicates the
importance of our CRF features.

Next, we add different sets of features to understand their impact. We
observe that adding more features improves the result. The precision and recall
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Table 17: Impact of different sets of features on the performance of CAPS. P, R
and F denote precision, recall and F-measure values respectively. The highest
precision, recall and F-measures across all feature dimensions are highlighted
in boldface.

No. Feature Dimension
Issue Non-issue

P R F P R F
1 Title 0.60 0.56 0.58 0.59 0.63 0.61
2 Body 0.63 0.58 0.60 0.61 0.66 0.54
3 CRF 0.93 0.57 0.70 0.70 0.95 0.80
4 Answer 0.91 0.31 0.46 0.59 0.95 0.73
5 Asker/Answerer Experience 0.57 0.45 0.51 0.55 0.66 0.60
6 Readability 0.60 0.66 0.63 0.63 0.56 0.59
7 Network Centrality 0.64 0.49 0.56 0.59 0.72 0.65
8 Question Info 0.82 0.60 0.69 0.69 0.87 0.77
9 Title +Body 0.65 0.61 0.63 0.64 0.68 0.66
10 Title + Body+ Answer 0.66 0.63 0.66 0.65 0.69 0.67
11 Title + Body + Answer +

Asker/Answerer Experience
0.79 0.68 0.73 0.73 0.83 0.77

12 Title + Body + Answer +
Asker/Answerer Experience +
CRF

0.95 0.71 0.81 0.76 0.95 0.84

13 TItle + Body + Answer +
Asker/Answerer Experience +
Readability

0.69 0.68 0.68 0.69 0.70 0.70

14 TItle + Body + Answer +
Asker/Answerer Experience +
Readability + Network Centrality

0.71 0.68 0.69 0.69 0.71 0.70

15 TItle + Body + Answer +
Asker/Answerer Experience +
CRF + Readability + Network
Centrality

0.87 0.92 0.90 0.92 0.91 0.91

16 TItle + Body + Answer + Read-
ability + Asker/Answerer Experi-
ence + CRF + Readability + Net-
work Centrality +QuestionInfo

0.91 0.94 0.92 0.94 0.92 0.92

values reach to 0.95 and 0.71 respectively for the issue class when we add the
first five feature sets (no. 12). Those values reach to 0.76 and 0.95 for the non-
issue class. Both results are higher than the result of any individual feature
set. Although readability, network centrality and question info feature sets
improve the result, we obtain the best result combining all feature sets. The
precision and recall values reach to 0.91 and 0.94 respectively for the issue
class. Thus, we obtain 11% improvement for the F-measure value compared
to the result considering only first five feature sets. The precision and recall
value for the non-issue class also reach to 0.94 and 0.92 respectively (F-measure
value improves by 8%).
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9.4 Runtime Performance

To measure the runtime performance of CAPS, we calculate the time required
to train our model and classify the posts. The majority of the time involves
annotating the sentences for training the CRF model. However, this is a one-
time operation only. For 5000 SO posts, CAPS takes around 7s to train the
CRF model and generate the features. It takes around 1.2s on average to
train the discriminative classification model for classifying the issue posts. For
testing each of the instance posts, it only takes 1ms on average.

10 Threats to Validity

This section summarizes the threats to the validity of our study.
First, we re-implemented the technique developed by Wang et al. [65] since

the data and the technique were not publicly available at the time of writing
the paper. Although we cannot guarantee that our implementation of the
technique does not contain any errors, we spent considerable time in replicating
and testing the technique to ensure its correctness.

Second, our dataset consists of posts concerning API issues of three differ-
ent APIs written in the Java language. One can argue that the results obtained
in our study may not hold for other APIs or for different languages. However,
we would like to point to the fact that our selection was based on our famil-
iarity with these APIs. To avoid bias, we considered posts from three different
APIs. The features we used to develop our technique is also not specific to any
particular language.

Third, we reported a set of phenomena while characterizing SO posts con-
cerning API issues. Further study is required to identify reasons that trigger
these phenomena, which remains as a future work.

11 Conclusion

Stack Overflow posts concerning API issues become a valuable source of in-
formation to API designers. Towards the goal of classifying API issue-related
posts, we develop a supervised learning approach using a CRF that can classify
issue-related sentences. We combine the features collected from the output of
CRF to that of seven other feature categories. This leads to the development of
an issue classifier, called CAPS. We evaluate CAPS using SO posts from three
different API types. Results from the study reveal that CAPS achieves high
precision and recall values for both classes. We also compare CAPS with three
other baseline approaches and the technique outperforms all of them. We also
show that by considering additional sources of information, we can improve
the performance of CAPS and we also identify the most important features
for the classification tasks. Furthermore, we evaluate the effectiveness of our
CRF-based issue sentence classification technique against two other baseline

Muhammad Asaduzzaman




An Extended Study On Classifying Stack Overflow Posts on API Issues 39

approaches. In both cases, the technique performs the best. Our approach also
enables highlighting problematic issue sentences which can allow developers
to (i) filter irrelevant sentences and focus on the API issue-related informa-
tion, (ii) understand issues more quickly and (iii) be more responsive to issues
submitted by users.
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