
Detecting Evolutionary Coupling Using Transitive
Association Rules

Md. Anaytul Islam
Computer Science and Engg. Discipline

Khulna University, Bangladesh
anaytularpon@gmail.com

Md. Moksedul Islam
Computer Science and Engg. Discipline

Khulna University, Bangladesh
moksedulislammishuk@gmail.com

Manishankar Mondal
Department of Computer Science

University of Saskatchewan, Canada
mshankar.mondal@usask.ca

Banani Roy
Department of Computer Science

University of Saskatchewan, Canada
banani.roy@usask.ca

Chanchal K. Roy
Department of Computer Science

University of Saskatchewan, Canada
chanchal.roy@usask.ca

Kevin A. Schneider
Department of Computer Science

University of Saskatchewan, Canada
kevin.schneider@usask.ca

Abstract—If two or more program entities (such as files,
classes, methods) co-change (i.e., change together) frequently
during software evolution, then it is likely that these two entities
are coupled (i.e., the entities are related). Such a coupling is
termed as evolutionary coupling in the literature. The concept of
traditional evolutionary coupling restricts us to assume coupling
among only those entities that changed together in the past.
The entities that did not co-change in the past might also have
coupling. However, such couplings can not be retrieved using
the current concept of detecting evolutionary coupling in the
literature. In this paper, we investigate whether we can detect
such couplings by applying transitive rules on the evolutionary
couplings detected using the traditional mechanism. We call
these couplings that we detect using our proposed mechanism
as transitive evolutionary couplings. According to our research
on thousands of revisions of four subject systems, transitive
evolutionary couplings combined with the traditional ones provide
us with 13.96% higher recall and 5.56% higher precision in
detecting future co-change candidates when compared with a
state-of-the-art technique.

I. INTRODUCTION

A software system evolves by experiencing changes in its
constituent entities (such as files, classes, methods). Making
changes in a software entity can often be challenging, because
changes to that entity might require corresponding changes to
some other related entities in order to ensure consistency of
the software system. Researchers have investigated to discover
such change correspondences, also known as change couplings,
among software entities through analyzing their evolutionary
history. These change couplings are called evolutionary cou-
pling or logical coupling in the literature [38].

If two or more program entities change together in a
commit operation, we call that the entities have co-changed.
Frequent co-change of a set of program entities during software
evolution is a meaningful phenomenon, because it indicates the
existence of change coupling or evolutionary coupling among
the co-changing or co-evolving entities. If two or more entities
frequently co-changed in the past, then it is likely that the
entities are related and a change in one of the entities in
future will require corresponding changes to the remaining
entities as well. In other words, it is likely that the entities

will again co-change in a future commit operation. While
the primary reason behind detecting evolutionary coupling is
to predict future co-change candidates for program entities,
such coupling has also been used for bug prediction [2], [32],
detecting cross cutting concerns [11], and finding important
clones for refactoring and tracking [28], [29]. We investigate
predicting future co-change candidates in our research. Better
prediction of evolutionary coupling can assist us in better
prediction of co-change candidates.

A number of studies [31], [21], [22], [38], [15], [13],
[18] have investigated predicting future co-change candidates
for program entities through analyzing evolutionary coupling
of entities. Evolutionary coupling has been realized using
association rules [38]. An association rule consisting of a
number of program entities has two measures: Support and
Confidence. These two measures are based on the co-change
frequency of the constituent program entities and indicate the
strength of coupling among the entities. Higher values of
Support and Confidence indicate stronger coupling among en-
tities. However, the main drawback of association rule mining
technique dealing with support and confidence is that it can
only help us realize evolutionary coupling among entities that
changed together (co-changed) in the past. If two entities did
not co-change in the past, we cannot form any association rule
from them and thus, cannot realize coupling between them.
However, such entities (the entities that did not co-change
before) might also have coupling and changing one entity in
future might require corresponding changes to the other entity.
Focusing on this drawback of the classical association rules,
we propose a technique for detecting coupling among program
entities that did not co-change in the past.

Our proposed technique is also dependent on association
rule mining technique. We first detect association rules by
automatically examining the evolutionary history of our subject
systems and then apply transitivity on these rules to derive new
rules which we call Transitive Association Rules. Transitive
association rules can realize coupling among program entities
which did not co-change before. We call such couplings the
Transitive Evolutionary Coupling. Fig. 1 explains our concept
of transitive evolutionary coupling with a simple example.

Fig. 1. Explaining transitive evolutionary coupling

Fig. 1 shows the evolution of four program entities E1 to
E4 of a subject system through eight commit operations C1 to
C8. From the evolution history it is clear that the entities E1
and E2 have evolutionary coupling, because they co-changed
(i.e., changed together) in two commit operations: C1 and C3.
The entities E2 and E3 also exhibit evolutionary coupling,
because they co-changed in the commit operations: C5, C7,
and C8. However, the entities E1 and E3 never co-changed
and thus, according to the current consideration of evolutionary
coupling, E1 and E3 do not have such a coupling between
them. We cannot derive any association rules considering these
two entities (E1 and E3). However, our idea is to realize
a coupling even between E1 and E3, because both of them
have coupling with a single entity, E2. This coupling that
we propose to realize between E1 and E3 has been denoted
as transitive evolutionary coupling in this paper. Section III
defines transitive association rules and describes how we use it
for realizing as well as quantifying such transitive evolutionary
couplings. From Fig. 1 it is clear that the entity E4 does not
exhibit evolutionary coupling with any of the other entities.

While most of the existing studies investigated evolutionary
coupling considering file level granularity, we conduct our
study considering a finer granularity, method level granular-
ity. Investigation considering a finer granularity is important,
because it can help us understand which fine grained entities in
the code-base are responsible for frequent co-change of files.
We answer two research questions listed in Table I through
our experiments. Our research on thousands of revisions from
four subject systems written in two different programming
languages show that:

• Transitive association rules combined with the regular
association rules outperform regular rules in predicting
future co-change of program entities (methods in our
experiment).

• A combination of regular and transitive association
rules outperforms a state of the art technique called
TARMAQ [31] in predicting co-change candidates for
methods. Our prediction mechanism dealing with both
regular and transitive rules achieves overall 13.96%
higher recall and 5.56% higher precision when com-
pared with TARMAQ that deals only with regular
association rules.

The rest of the paper is organized as follows. Section II
defines association rule and its related measures, Section III
discusses on transitive association rules, Section IV describes

TABLE I. RESEARCH QUESTIONS

Serial Research Questions (RQs)

RQ1 Can transitive association rules help us in better prediction of
co-change compared to regular rules?

RQ2 Can transitive association rules help us in better prediction of
future co-change candidates for methods?

the experiment setup and steps, Sections V and VI elaborate
on our experiments and discuss our findings, Section VII
discusses the threats to validity, Section VIII describes the
related research, and finally, Section IX concludes the paper
by mentioning future research possibilities.

II. ASSOCIATION RULES

Association rule was first introduced by Agrawal et al.
[1] for the purpose of identifying frequent item sets in large
transactions. This concept was later used in the field of
software engineering for identifying coupling among program
entities. The coupling that we realize among program entities
by mining association rules is termed as evolutionary coupling
or logical coupling [9], [38]. An association rule has two
measures: Support and Confidence. In the following paragraphs
we define association rules and the two related measures.

A. Association Rule

An association rule [1] is formally defined as an expression
of the form X => Y . Here, X is known as the antecedent
and Y is the consequent. Each of X and Y is a set of one or
more program entities. In the context of software engineering,
such an association rule implies that if X gets changed in a
particular commit operation, Y also has the tendency of getting
changed in that commit operation.

B. Support and confidence of association rule

According to Zimmermann et al. [38], support is the
number of commits in which an entity or a group of entities
changed together. Let us consider an example of two program
entities E1 and E2. These entities can be files, classes, or
methods. If E1 and E2 have ever changed together (co-
changed), we can assume two association rules, E1 => E2

and E2 => E1 from these. Suppose, E1 was changed in four
commit operation: 2, 5, 6, and 10 and E2 was changed in
six commits: 4, 6, 7, 8, 10, and 13. Thus, according to the

definition, support(E1) = 4 and support(E2) = 6. However,
support(E1, E2) = 2, because E1 and E2 co-changed (changed
together) in two commits: 6 and 10. Support of a rule is
determined in the following way.

support(X => Y) = support(X,Y) (1)

Here, (X,Y) is the union of X and Y , and so
support(X => Y) = support(Y => X). For the
above example of two entities, support(E1 => E2) =
support(E2 => E1) = support(E1, E2) = 2.

Confidence of an association rule, X => Y , determines
the conditional probability that Y will change in a commit
operation provided that X changed in that commit operation.
We determine the confidence of the association rule, X => Y ,
according to the following equation.

confidence(X => Y) = support(X,Y)/support(X) (2)

If we again consider the same example of two entities E1
and E2, then confidence (E1 => E2) = support(E1, E2) /
support(E1) = 2 / 4 = 0.5 and confidence(E2 => E1) = 2 / 6
= 0.33. In our experiment we consider those association rules
where each of X and Y consist of a single method. Such an
association rule can be expressed as x => y where x and y
are two different methods.

III. TRANSITIVE ASSOCIATION RULES

We explain transitive association rules and their strengths
by considering Fig. 1 as our example. According to the
evolution history of the program entities E1, E2, and E3 in
Fig. 1, E1 and E2 have evolutionary coupling. The entities
E2 and E3 exhibit evolutionary coupling as well. The entities
E1 and E3 do not exhibit evolutionary coupling according
to the current concept. We propose to realize a coupling
between E1 and E3, because both are coupled with the same
entity E2. We call this coupling between E1 and E3 the
Transitive Evolutionary Coupling. Before explaining how we
derive Transitive Association Rules between E1 and E3, we
show and quantify the regular association rules between E1
and E2, and also, between E2 and E3.

A. Regular association rules

We will use the symbol, =>, to denote regular association
rules among program entities. From the evolution of two
entities E1 and E2 in Fig. 1, we can derive two association
rules, E1 => E2 and E2 => E1. Similarly, from the two
entities E2 and E3 we can form two regular association rules,
E2 => E3 and E3 => E2. According to the evolution in Fig.
1 and the definitions of Support and Confidence in Section II,
we determine the supports and confidences of these association
rules and present those in Table II.

B. Transitive association rules

We will use the symbol, ==>, to denote transitive asso-
ciation rules. For realizing the transitive evolutionary coupling
between the entities E1 and E3, we define two transitive
association rules: E1 ==> E3 and E3 ==> E1. We cannot

TABLE II. REGULAR ASSOCIATION RULES FROM FIG. 1

Support and Confidence for E1 => E2 and E2 => E1

Support (E1 => E2) = Support (E1, E2) = 2

Support (E2 => E1) = Support (E1, E2) = 2

Confidence (E1 => E2) = Support (E1 => E2) / Support (E1) = 2/3 = 0.66

Confidence (E2 => E1) = Support (E2 => E1) / Support (E2) = 2/5 = 0.4

Support and Confidence for E2 => E3 and E3 => E2

Support (E2 => E3) = Support (E2, E3) = 3

Support (E3 => E2) = Support (E2, E3) = 3

Confidence (E2 => E3) = Support (E2 => E3) / Support (E2) = 3/5 = 0.6

Confidence (E3 => E2) = Support (E3 => E2) / Support (E3) = 3/3 = 1

calculate the support values for such rules, because the con-
stituent entities never co-changed. However, we calculate their
confidence values by using confidences of regular association
rules in the following way. Confidence (E1 ==> E3) =
Confidence (E1 => E2) × Confidence(E2 => E3). Similarly,
Confidence (E3 ==> E1) = Confidence (E3 => E2) ×
Confidence(E2 => E1). Thus,

Confidence (E1 ==> E3) = 0.66 × 0.6 = 0.396

Confidence (E3 ==> E1) = 1.00 × 0.4 = 0.4

We can easily understand that the confidence value of a
transitive association rule will be at least as small as the lowest
value of its constituent confidences. It can never be greater than
any of its constituent confidence values.

C. Rationale behind the way of calculating confidence for
transitive association rules

Let us first consider the transitive association rule E1 ==>
E3. The regular association rule E1 => E2 with a confidence
of 0.66 indicates that if E1 gets changed, then E2 might also be
changed with a probability of 0.66. Similarly, the regular asso-
ciation rule E2 => E3 with confidence 0.6 implies that if E2 is
changed, then E3 might also be changed with a probability of
0.6. Thus, according to probability theory, changes in E1 might
also trigger changes in E3 and the probability of occurrence of
this phenomenon is the multiplication of the two probabilities
0.66 and 0.6. Thus, our calculation for determining confidence
for transitive association rules is reasonable.

In our example, we have derived a transitive association
rule from two regular association rules. However, it is also
possible to derive a new transitive association rule from two
existing transitive rules or from one transitive and one regular
rule. In our research we detect transitive association rules in
order to realize couplings among entities that did not co-change
in the past. We use these transitive rules with regular rules and
investigate whether transitive association rules can help us in
better prediction of co-change candidates for program entities.

D. A real-world example where transitive association rules
could help us in better prediction of co-change candidates

Table III shows a real-world example from our subject
system called MONOOSC where we could use transitive evolu-
tionary coupling for better prediction of co-change candidates.
From Table III we see that the two methods GetKey and
InitializeComponent changed together in the third commit
operation (i.e., C3). The method ids: M6 and M13 were

TABLE III. REAL LIFE EXAMPLE OF TRANSITIVITY

Commit C3 C5 C6
Method ID M6 M13 M13 M28 M6 M28

Method Name GetKey InitializeComponent InitializeComponent PutProjectMeta GetKey PutProjectMeta
Signature StringBuilderGetKey() voidInitializeCompone-

nt()
voidInitializeCompone-
nt()

StringBuilderPutProject
Meta(bool,string,string)

StringBuilderGetKey() StringBuilderPutProject
Meta(bool,string,string)

File path MonoOSC/
MonoOSCFrame-
work/Class/Functions/
Sources/GetPubkey.cs

MonoOSC/
MonoOSC/Forms/Main
Form.Designer.cs

MonoOSC/
MonoOSC/Forms/Main
Form.Designer.cs

MonoOSC/
MonoOSCFrame-
work/Class/Functions/
Sources/ PutSource-
ProjectMeta.cs

MonoOSC/
MonoOSCFrame-
work/Class/Functions/
Sources/GetPubkey.cs

MonoOSC/
MonoOSCFrame-
work/Class/Functions/
Sources/ PutSource-
ProjectMeta.cs

Package name Resource Manager Resource Manager Resource Manager Resource Manager Resource Manager Resource Manager
Class name MonoOSCFramework.

Functions.Sources.
GetPubkey

MonoOSC.MainForm MonoOSC.MainForm MonoOSCFramework.
Functions.Sources.
PutSourceProjec...

MonoOSCFramework.
Functions.Sources.
GetPubkey

MonoOSCFramework.
Functions.Sources.
PutSourceProjec...

Start line 30 29 29 32 42 48
End line 33 186 187 38 47 54

TABLE IV. SUBJECT SYSTEMS

System Lang. Domain LOC Revisions

Ctags C Code Def. Generator 33,270 774
MonoOSC C# Formats and Protocols 18,991 355
BRL-CAD C Solid Modeling CAD 52,313 735
Camellia C Multimedia 85,015 207

generated by our prototype tool. The table also shows that
the method M13 also co-changed with another method M28
(PutProjectMeta) in the fifth commit operation (C5). From
commit C3 we can realize a regular evolutionary coupling
between methods: M6 and M13. Similarly, from C5 we can
again realize evolutionary coupling between methods M13 and
M28. Now, according to our proposed idea, we can realize
a transitive evolutionary coupling between methods M6 and
M28. We see that these two methods have actually co-changed
in commit operation C6. This example makes us understand
that after commit C5, when a programmer attempted to change
any one of these two methods (M6 and M28), we could suggest
the other one as the possible co-change candidate. None of
the existing techniques [22], [38], [15], [13], [18] including
the state of the art [31] can provide such suggestions. Table
III shows each method with it’s method name, signature, file
path, package name, class name, start line, and end line. These
were automatically generated by our prototype tool that we
implemented for this research.

We also looked at the changes that occurred in the methods
M6 (GetKey) and M28 (PutProjectMeta) in commit C6 in
order to check whether the changes are related. We found
that the changes are actually related. In each of the methods,
a variable called ‘FullUserName’ was replaced by another
variable named ‘VarGlobal.PrefixUserName’.

IV. EXPERIMENT SETUP AND STEPS

A. Experiment setup

We conduct our experiment on four subject systems listed
in Table IV. We downloaded all the revisions (as mentioned
in Table IV) of these systems from an on-line SVN repository
called SourceForge [35]. We see that the systems are of dif-
ferent sizes. They belong to different application domains and
their revision history lengths are also different. The systems are
written in two different programming languages. We selected
the systems in this way because we wanted to avoid possible

bias related to subject system nature in our experiment. We also
conduct our experiment considering method level granularity.
The existing studies on evolutionary coupling have mostly
considered file level granularity. Thus, our study was done
considering a finer granularity compared to most of the existing
studies on evolutionary coupling.

B. Experiment steps

We automatically perform the following experimental steps
for each of our subject systems.

• We detect methods from each of the revisions of the
subject system using CTAGS [14].

• We then detect method genealogies considering all the
methods in all revisions using the approach followed
by Lozano and Wermelinger [24]. A genealogy of a
method consists of the snap-shots (instances) of that
method from the revisions where it was alive. Each
such revision contains one snap-shot (instance) of the
method. By analyzing the genealogy of a method,
we can determine how it was changed during system
evolution.

• Detecting changes between every two consecutive
revisions using UNIX diff.

• Mapping the changes to the already detected methods
of each revision by using starting and ending line
numbers of the methods and changes.

• Detecting regular as well as transitive association rules
of methods by analyzing method co-change history.

• Analyzing the impact of using transitive association
rules in predicting co-change candidates for methods.

In the following subsection we describe how we detect
association rules of methods by automatically examining the
entire evolution history of each of our subject systems.

C. Detecting regular association rules among methods

We detect and analyze binary association rules of methods
in our experiment. As an example of a binary association
rule we can consider the rule m1 => m2. We see that
this rule consists of only two methods. One method (m1) is
the antecedent and the other method (m2) is the consequent.
We detect binary association rules, because these can help us

predict co-change candidates for unseen queries. We explain
this in Section VI. For detecting binary association rules we
automatically examine the commit operations of a subject
system starting from the very beginning one (as mentioned in
Table IV). When examining a particular commit operation, we
first identify which methods changed together in this commit.
Let us assume that M >= 2 methods changed together in
a commit operation. We make all possible pairs from these
methods. For example, if 6 methods changed together in a
commit operation, then we make 15 method pairs in total.
Let us assume that (m1, m2) is such a pair. We make two
association rules: m1 => m2, and m2 => m1 from such
a pair. As we examine the commit operations sequentially,
we keep track of which method changed how many times,
and also, which methods making a pair co-changed how many
times. Using the change as well as co-change counts of m1
and m2, we determine the supports and confidences of the
two association rules: m1 => m2, and m2 => m1. Section
II describes the way of calculating support and confidence for
an association rule. In this way, we detect all possible binary
association rules as well as their supports and confidences by
analyzing the entire evolution history of each subject system.

In Section III, we described how we detect transitive as-
sociation rules from regular association rules. In the following
sections we describe our experiment on transitive association
rules, and answer the research questions in Table I by analyzing
experiment results.

V. PREDICTING CO-CHANGE AMONG PROGRAM ENTITIES
USING TRANSITIVE ASSOCIATION RULES

We apply our implementation on each of our subject
systems and answer the two research questions listed in Table I
through analyzing our experiment results. This section answer
the first research question RQ 1.

RQ 1: Can transitive association rules help us in better
prediction of co-change compared to regular rules?

Rationale behind answering RQ 1. The fundamental con-
cept of evolutionary coupling is that if two entities co-changed
(changed together) in the past, they might again co-change in
future. Association rules and the related measures support and
confidence help us determine this future co-change possibility.
We extend this idea of evolutionary coupling by proposing that
two entities that did not co-change in the past can also have a
possibility of co-changing in future. By introducing the concept
of transitive association rules we identify such entities (i.e., the
entities that did not co-change at past but have a possibility of
co-changing in future) and determine their probabilities of co-
changing in future. Our experiment regarding RQ 1 determines
whether transitive association rules can really help us identify
such entities. Identification of such entities will add a new
dimension to the concept of evolutionary coupling. We conduct
our experiment in the following way.

Investigation procedure. For each of our subject systems,
we divide the entire history of evolution into two halves.
For example, if a system’s evolution history consists of C
commit operations in total, then we divide these commits into
two halves where each half contains C/2 consecutive commit
operations. Now, by considering the first half of the commits,
we determine the regular as well as the transitive association

TABLE V. STATISTICS REGARDING REGULAR AND TRANSITIVE
ASSOCIATION RULES

Ctags MonoOSC BRL-
CAD

Camellia

Number of method pairs in the
set RS (Regular Set)

1804 3806 11379 26323

Number of method pairs in the
set TS (Transitive Set)

11407 22990 21758 4058

Number of method pairs in the
set CS (Check Set)

2331 5915 9556 452

CS ∩ RS 77 457 1062 73
CS ∩ TS 136 849 1270 1
CS ∩ (TS ∪ RS) 213 1306 2332 74

rules. As we discussed in Section IV, our association rules
(both regular and transitive) are binary ones. From these
association rules, we determine pairs of methods where the two
entities in the pair have evolutionary coupling. Let us assume
that we have obtained a method pair, (M1, M2), from the
first half of the commits of a subject system. We now analyze
the second half of the commits of the system and determine
pairs of methods such that the two methods making a pair co-
changed in at least one of the commit operations in the second
half. If the method pair (M1, M2) that we obtained from the
first half of the commits also appear in the set of method
pairs obtained from the second half, then we understand that
we could correctly predict a coupling between M1 and M2
by analyzing the commits in the first half. We determine the
following three sets by examining the method pairs obtained
from the two halves of commits of a subject system.

• RS (Regular Set): This set contains method pairs
obtained by applying regular association rules on the
first half of the commit operations. For each pair
in this set, the regular association rules predict the
presence of evolutionary coupling between the two
constituent methods.

• TS (Transitive Set): This set contains method pairs
obtained by applying transitive association rules on
the first half of the commits. For each pair in this
set, the transitive association rules predict the presence
of a coupling (i.e., transitive evolutionary coupling)
between the two constituent methods. The existing
techniques dealing with evolutionary coupling cannot
predict such couplings among program entities.

• CS (Check Set): This set contains method pairs that
we obtained by examining the co-changes of methods
in the second half of the commits. If a pair that we
obtained from RS or TS is also present in CS, then
we understand that the regular association rules or the
transitive association rules could correctly predict a
coupling between the constituent methods in the pair.

From the definitions of the two sets RS and TS, we
understand that these are disjoint. We show the values of |RS|,
|TS|, and |CS| in Table V for each of our subject systems.
By using the three sets (RS, TS, and CS) we determine the
following three percentages.

• P1: We first determine what percentage of co-changes
in the second half can be predicted by applying
regular association rules in the first half. We call this
percentage P1 and calculate it in the following way.

P1 =
|CS ∩RS| × 100

|CS|
(3)

• P2: P2 is the percentage of co-changes in the sec-
ond half that can be predicted by applying transitive
association rules in the first half. We determine this
percentage in the following way.

P2 =
|CS ∩ TS| × 100

|CS|
(4)

• P3: P3 is the percentage of co-changes in the second
half that can be predicted by applying both regular
and transitive association rules in the first half. We
determine this percentage in the following way.

P3 =
|CS ∩ (TS ∪RS)| × 100

|CS|
(5)

We determine these three percentages for each of our
subject systems and plot the percentages in the graph of
Fig. 2. From Fig. 2 this is clear that the percentage P2 is
higher than P1 for all subject systems except Camellia. For
Camellia, the intersection of the two sets CS and TS provides
only one method pair (c.f., Table V), and it makes the value
of P2 to be near zero. P3 is always the highest. In other
words, the possibility that a co-change in the second half of
commits will be predicted by the regular association rules in
the first half is most of the time lower than the possibility
that a co-change in the second half will be predicted by the
transitive association rules in the first half. When we combine
regular association rules with the transitive ones, we achieve
the highest possibility of predicting co-changes in the second
half of commit operations.

Answer to RQ 1: According to our investigation results
and analysis, transitive association rules can often help us in
better prediction of co-change compared to regular associa-
tion rules. Moreover, a combination of regular and transitive
association rules perform even better in predicting co-changes.

VI. PREDICTING FUTURE CO-CHANGE CANDIDATES
USING TRANSITIVE ASSOCIATION RULES

This section answers our second research question (RQ 2).

RQ 2: Can transitive association rules help us in better
prediction of future co-change candidates for methods?

Rationale behind answering RQ 2. The primary purpose
of detecting evolutionary coupling is to predict co-change
candidates for a program entity that a programmer is going
to change. In this section we will investigate how accurately
we can predict co-change candidates for methods using a
combination of regular and transitive association rules. We
also compare our prediction accuracy with that of a recently
introduced technique called TARMAQ [31] that deals with
the regular association rules only. For the purpose of our
comparison, we have implemented TARMAQ according to
the algorithm proposed by Rolfsnes et al. [31]. We could use
the existing implementation of TARMAQ, however, the exist-
ing implementation suggests co-change candidates considering
file level granularity. In our research, we investigate a finer
granularity, method level granularity. Investigation considering
method level granularity is tricky, because we need to detect

Ctags MonoOSC BRL-CAD Camellia
0

10

20

P1 (The percentage of co-changes in the second half that can be
predicted by applying regular association rules in the first half of
commit operations)

P2 (The percentage of co-changes in the second half that can be
predicted by applying transitive association rules in the first half of
commit operations)

P3 (The percentage of co-changes in the second half that can be
predicted by applying both regular and transitive association rules
in the first half of commit operations)

Fig. 2. Comparing the percentages of co-changes predicted by regular and
transitive association rules

methods from each revision of a subject system and then
detect method genealogies. We finally decided to implement
TARMAQ considering method level granularity so that we can
use it for comparing with our proposed mechanism. Two other
techniques called ROSE [38] and SVD [36] analyze evolu-
tionary coupling for suggesting co-change candidates by using
regular association rules. However, Rolfsnes [31] showed that
TARMAQ performs better than these two existing techniques
in suggesting co-change candidates. This is the reason why
we select TARMAQ for our comparison. In the following
subsections we describe our investigation and analysis for
answering RQ 2.

A. Prediction mechanism

Let us assume that a programmer is going to make changes
to a particular method in the most recent revision (i.e., the
working revision) of a subject system. We want to predict co-
change candidates for this target method. For suggesting co-
change candidates, we detect and analyze regular and transitive
association rules from all the previous commit operations.
We select those association rules where the target method is
the antecedent. The union of the consequents of these rules
is the set of suggested co-change candidates for the target
method. We order these suggested co-change candidates on
the basis of the confidence values of the selected association
rules. Previous studies [26], [27] show that association rules
with a very low support value (such as a support of 1 or
2) can often be important. This is the reason why we order
the suggested co-change candidates using confidence. We can
also predict co-change candidates for a set of two or more
target methods. In this case, we consider each of the methods
in the target set individually and select regular and transitive
association rules from the previous commits such that each rule
has one of these target methods as the antecedent. The union
of the consequents of these selected rules ordered according to

confidence values are the co-change candidates for the target
method set. We should again note that we detect association
rules as the binary ones where each of the antecedents and
consequents is a single method. In the following subsection
we will describe how we evaluate our prediction mechanism
that uses regular and transitive association rules.

B. Handling unseen queries

TARMAQ [31] is capable of predicting co-change candi-
dates for unseen queries. For an unseen query, TARMAQ finds
co-change candidates for the seen parts using regular associ-
ation rules, and provide these candidates as the suggestions
for the whole query. Our prediction mechanism described in
Section VI-A can also predict co-change candidates for unseen
queries, because we work with binary association rules. For a
query (i.e., a target set) that consists of two or more methods,
we search binary association rules considering each of the
methods in the query where the method is the antecedent in
the rule. From these binary association rules, we determine the
consequents. The union of these consequents is considered as
the result for the query.

C. Mechanism for evaluating prediction accuracy

We automatically examine and analyze the entire evolution
history of a subject system for the purpose of evaluation. Let
us assume that we are now examining a particular commit
operation c of a subject system. The set of methods that co-
changed in this commit operation is SM (Set of Methods).
We further assume that SM consists of five methods: m1, m2,
m3, m4, and m5. We determine all possible subsets of these
methods where a subset can have at most |SM | − 1 methods
(4 in this example). We consider each of these subsets as a
target set. For example a target set can consist of the methods:
m1 and m2. Our goal is to determine how accurately we can
predict co-change candidates for such a target set. We call
this target set TS. Section VI-A describes how we predict co-
change candidates for a target set of methods by analyzing
the regular and transitive association rules from the previous
commit operations. Now, as we automatically examine the
commit operation c, we realize that the actually co-changed
candidates for the target set TS are m3, m4, and m5. We define
a set called ACC (Actually Co-changed Candidates) consisting
of the three methods: m3, m4, and m5. Let us assume that the
set of predicted (suggested) co-change candidates for the target
set TS is PCC (Predicted Co-change Candidates) as obtained
by our prediction mechanism. Now, we can determine the
precision and recall (in percentage) in suggesting co-change
candidates for TS in the following way.

Precision =
|ACC ∩ PCC| × 100

|PCC|
(6)

Recall =
|ACC ∩ PCC| × 100

|ACC|
(7)

From the equations we realize that the set ACC ∩ PCC
contains those methods that are correctly predicted by our
prediction mechanism. In this way we determine the precision
and recall for every possible target sets from each of the
commit operations in the entire period of evolution of a subject
system. We then determine the average precision and recall.

D. Comparing our prediction mechanism with TARMAQ

We also apply TARMAQ on each of the subject systems
and determine precision and recall for every possible target set
from all the revisions as we have described in Section VI-C.
We then determine the average precision and recall for each
system. We should note that TARMAQ only deals with the
regular association rules. We did not use transitive association
rules when predicting co-change candidates using TARMAQ.

We compare the precisions and recalls obtained by TAR-
MAQ that only uses regular association rules and by our
prediction mechanism that uses both regular and transitive
association rules. The graphs in Fig. 3 to 10 show the com-
parisons. We show the precision and recall of our mechanism
for different confidence thresholds of the transitive association
rules. In each graph, we see a variation of the precision and
recall values computed by our mechanism. This variation oc-
curs because of considering different thresholds of confidences
for transitive association rules. For a particular confidence
threshold, we did not consider any transitive rule having a
confidence which is less than this threshold for detecting co-
change candidates. As TARMAQ does not consider transitive
association rules, there is no variation in the precision and
recall values computed by it.

Comparison regarding recall. If we consider the graphs
(Fig. 3, 4, 5, and 6) showing comparison for recall, we realize
that our prediction mechanism provides the highest recall when
the confidence threshold for the transitive association rules
is the lowest. As the threshold increases, the recall of our
prediction mechanism decreases. We also see that the recall
of our prediction mechanism is always higher than that of
TARMAQ. It is easy to realize that transitive association rules
provide a considerable amount of true positives and it makes
our prediction mechanism to achieve high recall values. From
Fig. 4 and Fig. 6 we realize that the recall of our prediction
mechanism can be two times of the recall value of TARMAQ at
the lowest confidence threshold of transitive association rules.

Comparison regarding precision. By looking at the
graphs in Fig. 7, 8, 9, and 10 we realize that for the lowest
confidence threshold of transitive association rules, our pre-
diction mechanism provides the lowest precision except for
Ctags. For Ctags, we get the highest precision at the lowest
confidence threshold of transitive association rules. For the
remaining three subject systems (BRL-CAD, Camellia, and
MonoOSC), as we gradually increase the confidence threshold,
the precision increases. At the confidence threshold of 0.7, our
prediction mechanism provides better precisions for Camellia,
MonoOSC, and Ctags and also better recalls for all the subject
systems.

We finally decide that for a confidence threshold of 0.7 for
transitive association rules, our prediction mechanism provides
better recalls (overall 13.96% higher recall according to our
calculation considering all subject systems) and mostly better
precisions (overall 5.56% higher precision according to all
subject systems) when compared with TARMAQ. Fig. 11 and
12 show comparisons regarding recall and precision between
our prediction mechanism and TARMAQ by considering a
confidence threshold of 0.7 for transitive association rules.
Fig. 11 shows that the recall of our prediction mechanism
is always higher compared to TARMAQ. Fig. 12 implies

Fig. 3. Comparison of recalls for Brlcad

Fig. 4. Comparison of recalls for Ctags

that the precision of our prediction mechanism is higher than
TARMAQ for three subject systems except BRL-CAD.

Answer to RQ 2. From our experiment and analysis
we can state that transitive association rules combined with
regular rules can help us in better prediction of co-change
candidates considering method level granularity.

We should note that the precision and recall of both
techniques (our proposed one and TARMAQ) are low for some
subject systems such as Ctags and Camellia. The reason behind
this is that we have investigated using method granularity.
Kagdi et al. [21] showed that investigation on evolutionary
coupling considering a finer granularity such as method gran-
ularity can result in lower precision and recall. Kagdi et al. [21]
achieved at best 28% recall and 9% precision in their study.
However, in our study we see that the precisions and recalls
are considerable for some subject systems such as BRL-CAD
and MonoOSC. The reason behind this is that we have used
transitive association rules which have helped us achieve better
precisions and recalls.

VII. THREATS TO VALIDITY

We did not investigate enough subject systems in our study,
and thus, our findings might not be generalized. However,
we selected our systems focusing on the diversity of their
application domains (four domains), sizes, revision history
lengths, and implementation languages (C and C#) so that we
can avoid subject system bias on our findings.

While the existing studies have investigated association
rules consisting of more than two program entities, we inves-
tigate binary association rules each consisting of two entities
(one entity is the antecedent and the other entity is the conse-
quent). However, even after using binary association rules we
detected co-change candidates for target method sets consisting
of two or more entities. Section VI describes how we do this.
When suggesting co-change candidates for a target method, we
retrieve all binary association rules from the previous commits
where the target method is the antecedent. The union of the

Fig. 5. Comparison of recalls for MonoOSC

Fig. 6. Comparison of recalls for Camellia

Fig. 7. Comparison of precisions for Brlcad

Fig. 8. Comparison of precisions for Ctags

Fig. 9. Comparison of precisions for MonoOSC

Fig. 10. Comparison of precisions for Camellia

Ctags MonoOSC BRL-CAD Camellia
0

20

40

60

Recall obtained by our prediction mechanism that uses both regular
and transitive association rules

Recall obtained by TARMAQ that uses regular association rules only)

Fig. 11. Comparison regarding recall in predicting co-change candidates

consequents of these association rules is considered as the set
of suggested co-change candidates for the target method. Thus,
we do not miss any suggestions. Moreover, binary association
rules makes us capable of handling unseen queries. We finally
believe that our idea of working with binary association rules
is reasonable.

Some of the existing studies [9], [37], [8], [23] have
investigated evolutionary coupling by filtering out association
rules with low support values. Such type of filtering is rea-
sonable while dealing with file level evolutionary coupling.
We investigate method level evolutionary coupling. Infrequent
co-change of methods is often important while dealing with
method level granularity [26], [27]. Thus, our decision of not
discarding low support association rules is reasonable.

VIII. RELATED WORK

The concept of evolutionary coupling originated from
association rules introduced by Agrawal et al. [1]. They
introduced an association rule to represent frequent item-sets
in large databases. Later, this concept has been heavily used to
represent change coupling (i.e., evolutionary coupling) among
different program entities in a software system.

A great many studies [38], [16], [15], [19], [13], [18], [2],
[32], [3], [11], [33], [31] have been conducted on the use of
evolutionary coupling in software maintenance research and
practice. In all of these studies evolutionary coupling has been
realized by regular association rules. Support and confidence
measures have been used to determine the likeliness of the
presence of evolutionary coupling among the entities in a rule.

Ctags MonoOSC BRL-CAD Camellia
0

10

20

Precision obtained by our prediction mechanism that uses both
regular and transitive association rules

Precision given by TARMAQ that uses regular association rules only)

Fig. 12. Comparison regarding precision in predicting co-change candidates

A number of studies [34], [9], [20], [26], [4], [7] in-
vestigated ways to improve the detection accuracy of evolu-
tionary coupling by combining association rule mining with
the Granger causality test [9], macro co-change and dephase
macro co-change [20], and interactions [7]. There are some
preliminary studies investigating some new measures such as
significance [26], and pattern age and pattern distance [4].
These measures are dependent on the co-change frequency of
entities. We see that each of these studies investigated ways to
improve the detection accuracy of change coupling (i.e., evolu-
tionary coupling), however, none of these deal with transitive
association rules. Our study introduces transitive association
rules and shows that these can provide better prediction of
co-change candidates when combined with regular association
rules.

Kagdi et al. [21] combined evolutionary coupling with
conceptual coupling in order to identify the impact sets in
change impact analysis. They identified evolutionary coupling
using association rules and the related measures: support and
confidence. However, we show that evolutionary coupling can
be better identified when we consider regular association rules
in combination with transitive association rules.

Rolfsnes et al. [31] investigated file level evolutionary
coupling and determined co-change candidates for unseen
queries by applying regular association rules on the previously
seen parts of the query. We have implemented their mechanism
called TARMAQ considering method level granularity and
compared with our prediction mechanism that considers both
regular and transitive association rules. TARMAQ works only
with regular association rules. We compared our prediction
mechanism with TARMAQ and found that our mechanism
outperforms TARMAQ in predicting co-change candidates
with 13.96% higher recall and 5.56% higher precision. The
reason why our prediction mechanism performs better is that it
considers transitive association rules that can predict coupling
among methods which did not co-change previously. We did
not compare our prediction mechanism with other existing
techniques called ROSE [38] and SVD [36]. Rolfsnes et al.
[31] compared TARMAQ with these techniques and showed
that TARMAQ performs better than these techniques. Thus,
comparing our technique with only TARMAQ is reasonable.

To the best of our knowledge, our study is the first one to
introduce and investigate transitive association rules for better
prediction of co-change candidates for methods. We find that
transitive association rules combined with regular association
rules can help us in better prediction of co-change candidates
when compared with a state of the art tool called TARMAQ.
Transitive association rules can assist regular association rules
in all aspects where evolutionary coupling is used.

IX. CONCLUSION

In this paper, we introduce a novel a concept, transitive
association rules, that helps us realize evolutionary coupling
among program entities that did not co-change in the past.
We call this coupling transitive evolutionary coupling in our
research. The regular association rules cannot predict cou-
pling among program entities that did not change together
previously. For making transitive association rules, we apply
transitivity on the regular association rules. Our experiment
on thousands of commits from four diverse subject systems
reveals that transitive association rules combined with regular
ones can help us in better prediction of co-change among
program entities (methods in our research). Our co-change
prediction mechanism that uses both regular and transitive
association rules outperforms a state of the art technique
called TARMAQ with 13.96% higher recall and 5.56% higher
precision. TARMAQ deals with regular association rules only.
We believe that our proposed idea of transitive association
rules will be beneficial in dealing with evolutionary coupling
as well as change impact analysis. In future, we plan to apply
this idea in different other aspects such as bug localization and
finding cross-cutting concerns where evolutionary coupling has
been used. Our implementation and data from our research are
available on-line [30].

REFERENCES

[1] R. Agrawal, T. Imieliski, A. Swami, “Mining association rules between
sets of items in large databases”, Proc. ACM SIGMOD, 1993, 22(2): 207
- 216.

[2] S. N. Ahsan, F. Wotawa, “Fault Prediction Capability of Program Files
Logical-Coupling Metrics,” Proc. IWSM-MENSURA, 2011, pp. 257 - 262.

[3] N. Ali, F. Jaafar, A.E. Hassan, “Leveraging Historical Co-change Infor-
mation for Requirements Traceability”, Proc. WCRE, 2013, pp. 361 -
370.

[4] A. Alali, B. Bartman, C. D. Newman, J. I. Maletic, “A Preliminary
Investigation of Using Age and Distance Measures in the Detection of
Evolutionary Couplings”, Proc. MSR, 2013, pp. 169 - 172.

[5] R. S. Arnold, S. A. Bohner. “Impact analysis-towards a framework for
comparison”, Proc. Conference on Software Maintenance, 1993, pp. 292
- 301.

[6] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy, “If your version control
system could talk”, Proc. ICSE Workshop on Process Modelling and
Empirical Studies of Software Engineering, vol. 11, 1997, pp. 1 - 5.

[7] F. Bantelay, M. B. Zanjani, H. Kagdi, “Comparing and Combining
Evolutionary Couplings from Interactions and Commits”, Proc. WCRE,
2013, pp. 311 - 320.

[8] G. Bavota, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, A. D.
Lucia, “An Empirical Study on the Developers’ Perception of Software
Coupling”, Proc. ICSE, 2013, pp. 692 - 701.

[9] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using multivari-
ate time series and association rules to detect logical change coupling:
An empirical study”, Proc. ICSM, 2010, pp. 1 - 10.

[10] G. Canfora, and L. Cerulo. “Impact analysis by mining software and
change request repositories”, Proc. Software Metrics, 2005, pp. 9 - 29.

[11] G. Canfora, L. Cerulo, and M. D. Penta, “On the Use of Line Co-change
for Identifying Crosscutting Concern Code”, Proc. ICSM, 2006, pp. 213
- 222.

[12] M. DAmbros, M. Lanza, “Reverse Engineering with Logical Coupling”,
Proc. WCRE, 2006, pp. 189 - 198.

[13] M. D’Ambros, M. Lanza, M. Lungu, “The evolution radar: Visualizing
integrated logical coupling information”, Proc. MSR, 2006, pp. 26 - 32.

[14] Exuberant CTAGS: https://sourceforge.net/projects/ctags/?source=
directory

[15] H. Gall, M. Jazayeri, J. Krajewski, “CVS Release History Data for
Detecting Logical Couplings”, Proc. IWPSE, 2003, pp. 13 - 23.

[16] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history”, Proc. ICSM, 1998, pp. 190 - 199.

[17] C. W. J. Granger, “Investigating causal relations by econometric models
and cross-spectral methods”, Econometrica, 1969, 37(3): 424 - 438.

[18] N. Hanakawa, “Visualization for software evolution based on logical
coupling and module coupling”,Proc. APSEC, 2007, pp. 214 - 221.

[19] J. Itkonen, M. Hillebrand, V. Lappalainen, “Application of Relation
Analysis to a Small Java Software”, Proc. CSMR, 2004, pp. 233 - 239.

[20] F. Jaafar, Y. Gueheneuc, S. Hamel, G. Antoniol, “An Exploratory Study
of Macro Co-changes”, Proc. WCRE, 2011, pp. 325 - 334.

[21] H. Kagdi, M. Gethers, D. Poshyvanyk, M. L. Collard,“Blending Con-
ceptual and Evolutionary Couplings to Support Change Impact Analysis
in Source Code”, Proc. WCRE, 2010, pp. 119 - 128.

[22] H. Kagdi, M. Gethers, D. Poshyvanyk, “Integrating conceptual and
logical couplings for change impact analysis in software”, Empirical
Software Engineering, 2013, 18(5):933 - 969.

[23] S. Kotsiantis , D. Kanellopoulos, “Association Rules Mining: A Recent
Overview”, GESTS International Transactions on Computer Science and
Engineering, 2006, 32(1):71 - 82.

[24] A. Lozano and M. Wermelinger, “Tracking clones imprint”, Proc. IWSC,
2010, pp. 65 - 72.

[25] M. M. Lehman, and J. F. Ramil. “Software evolutionbackground, theory,
practice”, Information Processing Letters 88.1 (2003): 33 - 44.

[26] M. Mondal, C. K. Roy, K. A. Schneider, “Improving the Detection
Accuracy of Evolutionary Coupling”, Proc. ICPC, 2013, pp. 223 - 226.

[27] M. Mondal, C. K. Roy, K. A. Schneider, “Improving the detection
accuracy of evolutionary coupling by measuring change correspondence”,
Proc. CSMR-WCRE, 2014, pp. 358 - 362.

[28] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic ranking of clones
for refactoring through mining association rules”, Proc. CSMR-WCRE,
2014, pp. 114 - 123.

[29] M. Mondal, C. K. Roy, K. A. Schneider, “Automatic Identification of
Important Clones for Refactoring and Tracking”, Proc. SCAM, 2014, pp.
11 - 20.

[30] M. A. Islam, M. M. Islam, M. Mondal, B. Roy, C. K. Roy, and K. A.
Schneider, “Implementation and data from our investigation regarding
transitive association rules”, goo.gl/gVwcDj

[31] T. Rolfsnes, S. D. Alesio, R. Behjati, L. Moonen and D. W. Bink-
ley, “Generalizing the Analysis of Evolutionary Coupling for Software
Change Impact Analysis”, Proc. SANER, 2016, pp. 201 - 212.

[32] C. Tantithamthavorn, A. Ihara, K. Matsumoto, “Using Co-Change
Histories to Improve Bug Localization Performance”, Proc. ACIS, 2013,
pp. 543 - 548.

[33] S. Wenzel, H. Hutter, U. Kelter, “Tracing Model Elements”, Proc.
ICSM, 2007, pp. 104 - 113.

[34] R. Robbes, D. Pollet, and M. Lanza, “Logical coupling based on
finegrained change information”, Pro. WCRE, 2008, pp. 42 – 46.

[35] SourceForge: https://sourceforge.net/
[36] Singular Value Decomposition. https://en.wikipedia.org/wiki/

Singular-value decomposition
[37] A. T. T. Ying, G. C. Murphy, R. Ng, M. C. Chu-Carroll, “Predicting

source code changes by mining change history,” TSE, 2004, 30(9):574–
586.

[38] T. Zimmermann, P. Weissgerber, S. Diehl, A. Zeller, “Mining Version
Histories to Guide Software Changes”, Proc. ICSE, 2005, pp. 563 - 572.

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

Manishankar
Highlight

